HORMONAL CONTROL OF MAMMARY GLAND GROWTH

Suporn Katawatin
Technical Terms

- **Mammogenesis**: Growth and morphological development of the mammary gland.
- **Lactogenesis**: Last stages of biochemical and structural differentiation of the alveolar epithelial cells during the periparturient period, required for onset of copious milk secretion.
- **Galactopoiesis**: Maintenance of lactation.
- Development of the mammary gland is a by-product of reproduction
- Hormones responsible for mammary growth are the same hormones responsible for reproduction

Further reading: RegulatorsMammaryFunction
Figure 3. Location of the major endocrine glands of the cow.
Evidences on ovarian support of mammary development

Ovariectomy:

- regress mammary gland during pregnancy but not during lactation
- stops allomettric growth; gland returns to isometric growth pattern
- implicates pituitary-ovary-mammary gland relationship
Ovariectomy + hormone (in ruminant):

- E_2 primarily responsible for mammary duct development
- P_4 primarily responsible for lobulo-alveolar development; cattle must have a functional CL
- $E_2 + P_4$ synergistic on mammary growth (not comparable to growth resulting from pregnancy)
Exogenous hormones

- E_2 elicits
 - extensive duct growth and considerable lobulo-alveolar growth
 - but abnormality do occur: cystic alveoli, folded epithelium, immature lobules, deficiency of alveolar surface

- P_4 eliminates abnormalities,
 - increases alveolar surface
 - increases amount of parenchyma
 - increases ensuing milk yields
Steroid hormones on mammogenesis & lactogenesis

- sources
- action
Estrogens: follicle, placenta, adrenal cortex

- stimulate PRL release & duct growth
- synergizes with PRL + P₄ to stimulate protein synthesis & duct growth (greater than separately)
Progesterone: corpus luteum, placenta, adrenal cortex

- synergizes with $E_2 + \text{PRL}$ stimulates lobulo-alveolar growth
- retards milk synthesis
 - prevents synthesis and accumulation of enzymes (α-lactalbumin) necessary for lactogenesis in prepartum gland
 - but does not interfere to same extent during lactation
- $P_4 + \text{PRL}$ stimulates aa incorporation into protein
Mammogenesis

- Placental E_2 + Luteal P_4
 - Duct development
 - Lobulo-alveolar development
 - Suppression of milk synthesis
Glucocorticoids: cortisol; adrenal cortex

- Stimulated by maternal, fetal ACTH
- Receptors on mammary cells
- Essential to lactogenesis (as seen adrenalectomized females no lactation)
- Cortisol potentiates prolactin on mammary epithelial cell (lactogenic)
action of cortisol:

- cortisol synergizes with prolactin
 - cause differentiation of epithelial cells
 - stimulate protein synthesis:
 - increase prolactin receptor synthesis
 - increase casein synthesis
- permissive to action of prolactin
- P_4 binds to corticoid receptors: thus antagonistic

- BUT, milk fat globule sequesters P_4 during lactation!
 (thus allowing action cortisol/PRL)
Lactogenesis = initiation of milk synthesis

- initiated in E_2 primed mammary gland when P_4 is removed
 - corpus luteum regresses & P_4 declines
 - cortisol increases
 - PRL, GH increase
- cortisol synergizes with PRL stimulate PRL receptors
 - synthesis
- these circumstances occur at parturition
Lactogenesis: when P_4 present

- P_4 inhibits full synthesis of α-lactalbumin, casein mRNA, casein
- P_4 prevents induction of prolactin receptors
- P_4 blocks cortisol receptors
- Thus, P_4 retards milk synthesis in non-lactating

P_4 drops rapidly just prior to parturition
Lactogenesis: changes when \(P_4 \) declining

- increased cortisol binding to mammary cells
- increased induction of prolactin receptors
- Increased \(\alpha \)-lactalbumin, casein and enzyme synthesis
- Results in increased lactose and protein synthesis
- Thus, increase milk synthesis

- During lactation, \(P_4 \) elevated again but \(P_4 \) has high affinity for milk lipid, and much of it will be seized in milk fat globule
Hormones & lactogenesis

- Maintenance of elevated serum P_4 and receptors in epithelial cells during gestation serve to prevent premature onset of milk component biosynthesis.
- As parturition approaches, P_4 decrease with a consequent reduction in inhibition.
- During the same interval, enhanced secretion of E_2
 - increase PRL receptors in mammary gland
 - PRL and glucocorticoid concentrations increase
- Thus, lactogenesis relies on increasing positive stimulation and removal inhibition.
Lactogenesis: at parturition

- PGF$_{2\alpha}$ increase
- corpus luteum regresses
- P_4 declines
- fetal, maternal cortisol increase
- PRL, GH increase
- α-lactalbumin, casein synthesis increase
- lactose synthesis increases > milk synthesis
Mammogenesis/ Lactogenesis

- Endocrine of mammogenesis/ lactogenesis:
 - E_2 (placenta, ovary) \rightarrow mammary duct growth
 - P_4 (CL, placenta) \rightarrow alveolar differentiation
 - cortisol (adrenal cortex) + PRL (ant. pit.) \rightarrow protein synthesis + α-lactalbumin (RER)
 - α-lactalbumin \rightarrow lactose synthesis (golgi apparatus)
Lactogenesis/Lactation

- During established lactation:
 - P_4 increase again during luteal phase
 - P_4 increase upon conception

BUT
- P_4 has high affinity for milk fat globule
 - thus P_4 will be seized by milk fat & exported from cell
 - cortisol will be free to bind to cell

- milk synthesis function
Lactogenesis/ Lactation

- Open heifers & Lactating cows:
 - P₄ & E₂ secretion are asynchronous

- กราฟประกอบ แสดงฮอร์โมน
Lactogenesis/ Lactation

- Pregnant heifers & Pregnant lactating cows:
 - P_4 & E_2 secretion is synchronous
 - P_4 is seized by milk fat globule until lactation ends (dry period)
Cyclic hormonal of estrous cycle on mammary function

- **Proestrus & Estrus:**
 - Estrogen increases:
 - mitotic activity increases
 - duct growth increases
- **Metestrus & Diestrus:**
 - Progesterone increases:
 - some alveolar differentiation occurs

During estrous cycle, E₂ and P₄ secretion is asynchronous; thus very little mammary development occurs.
Cyclic hormonal of estrous cycle on mammary function (cont.)

- Prior to pregnancy:
 - Majority of tissue is adipose; some ducts
 - No true functioning alveoli
 - Alveolar development requires simultaneous $E_2 + P_4$
Mammary gland changes during Pregnancy

- **1st & 2nd trimester:**
 - duct proliferation
 - development of gland cistern

- **2nd trimester:**
 - secretory tissue develops and replaces adipose tissue
 - end buds form
 - alveoli differentiate
 - lobules, lobes; connective tissue support develops
 - tissue DNA increases (25%)
 - vascular and lymph vessels proliferate

- **3rd trimester: (near 9th month)**
 - mammary cell secretory activity initiated
 - cellular membranes proliferate
 - cellular lipid and secretory granules become evident
 - mammary gland begins to become distended
Fig. 30-2. A simplified diagram showing the action of hormones on mammary growth and lactation. In the diagram of the gland: upper—rudimentary gland; right—prepuberal to puberal gland; lower—prolactational gland of pregnancy; left—lactating gland. From Lyons, Li, and Johnson: Rec. Prog. Horm. Res., 14, 1958.