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Ghrelin is a peptide predominantly produced by the stomach.
Ghrelin displays strong GH-releasing activity. This activity is
mediated by the activation of the so-called GH secretagogue
receptor type 1a. This receptor had been shown to be specific
for a family of synthetic, peptidyl and nonpeptidyl GH secre-
tagogues. Apart from a potent GH-releasing action, ghrelin
has other activities including stimulation of lactotroph and
corticotroph function, influence on the pituitary gonadal axis,
stimulation of appetite, control of energy balance, influence
on sleep and behavior, control of gastric motility and acid

secretion, and influence on pancreatic exocrine and endo-
crine function as well as on glucose metabolism. Cardiovas-
cular actions and modulation of proliferation of neoplastic
cells, as well as of the immune system, are other actions of
ghrelin. Therefore, we consider ghrelin a gastrointestinal
peptide contributing to the regulation of diverse functions of
the gut-brain axis. So, there is indeed a possibility that ghrelin
analogs, acting as either agonists or antagonists, might have
clinical impact. (Endocrine Reviews 25: 426–457, 2004)
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I. Introduction

GHRELIN IS A 28-amino residue peptide predominantly
produced by the stomach (Fig. 1). Substantially lower

amounts were detected in bowel, pancreas, kidneys, the im-
mune system, placenta, testes, pituitary, lung, and hypothal-
amus (1–12). Ghrelin displays strong GH-releasing activity,
which is mediated by the activation of the so-called GH

secretagogue (GHS) receptor type 1a (GHS-R 1a) (13). Before
the discovery of ghrelin, this orphan receptor had been
shown to be specific for a family of synthetic, peptidyl and
nonpeptidyl GHS (1, 14–23). GHS-Rs are concentrated in the
hypothalamus-pituitary unit but are also distributed in other
central and peripheral tissues (8, 13, 14, 20, 22–30). Indeed,
apart from stimulating GH secretion, ghrelin and many syn-
thetic GHS (Fig. 2): 1) exhibit hypothalamic activities that
result in stimulation of prolactin (PRL) and ACTH secretion;
2) negatively influence the pituitary-gonadal axis at both the
central and peripheral level; 3) stimulate appetite and a pos-
itive energy balance; 4) influence sleep and behavior; 5) con-
trol gastric motility and acid secretion; and 6) modulate pan-
creatic exocrine and endocrine function and affect glucose
levels.

Cardiovascular actions and modulation of the prolifera-
tion of neoplastic cells, as well as of the immune system, are
also actions of ghrelin and/or other GHS (2, 8, 9, 14, 16, 20,
25, 27, 31–58). Given this wide spectrum of biological activ-
ities, it is evident that the discovery of ghrelin opened many
new perspectives within neuroendocrine and metabolic re-
search and even has an influence on fields of internal med-
icine such as gastroenterology, immunology, oncology, and
cardiology. It is therefore increasingly likely that ghrelin and
its GHS analogs, acting as either agonists or antagonists on
different physiological and pathophysiological processes,
might have clinical impact and therapeutic potential.

II. Historical Background

The gastric hormone ghrelin was identified as an endog-
enous ligand for the former orphan receptor GHS-R 1a (1, 13,
14); the discovery of this receptor followed by 20 yr that of
synthetic GHS, which specifically binds it (1, 14, 17, 19–21,

Abbreviations: AGRP, Agouti-related protein; CNS, central nervous
system; CST, cortistatin; GABA, �-aminobutyric acid; GHD, GH defi-
ciency or GH-deficient; GHRP, GH-releasing peptide; GHS, GH secre-
tagogue(s); GHS-R 1a, GHS receptor type 1a; GLP, glucagon-like pep-
tide; HDL, high-density lipoprotein; NPY, neuropeptide Y; POMC,
proopiomelanocortin; PRL, prolactin; PWS, Prader-Willi syndrome; SS,
somatostatin.
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28, 59–72). This makes the discovery of ghrelin an example
of reverse pharmacology, which in this case means that it
started with the synthesis of analogs and it ended with the
discovery of a natural ligand via the discovery of a natural
receptor.

Synthetic GHS are a family of ligands, including peptidyl
and nonpeptidyl molecules (Table 1) (8, 14, 20, 68, 69, 73–82).
The first synthesized molecules were nonnatural peptides
[GH-releasing peptides GHRPs)] that were designed by
Bowers and Momany (59, 60, 68, 73) in the late 1970s. They
were metenkephalin derivatives devoid of any opioid activ-
ity (Table 2).

GHRP-6 (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) was the
first hexapeptide to actively release GH in vivo, in humans
even more than in animals. One of its most remarkable prop-
erties was that GHRP-6 showed strong GH-releasing activity
even after oral administration, although with low bioavail-
ability and short-lasting effects (14, 68, 73, 74, 83). Further
research that aimed to select orally active molecules with
better bioavailability and longer half-lives led to the synthe-
sis of other GHRPs as well as the discovery of orally active
nonpeptidyl molecules. The most representative of these
nonpeptidyl GHS that was studied in humans was the spi-

roindoline L-163,191 (MK-0677) (14, 84–105). MK-0677 has
been shown to possess a high bioavailability and is able to
enhance 24-h GH secretion after a single oral administration
(14, 84–105). All these data explain why MK-0677 became the
most likely candidate compound for drug treatment of GH
deficiency (GHD) in childhood. Also, it was suggested that,
as an orally active anabolic drug, it might play a therapeutic
role for antiaging purposes in frail elderly subjects (14, 85, 86,
88–90, 92, 96, 97, 99, 102–105).

Very recently, another new peptidomimetic GHS with po-
tent and selective GH-releasing activity was synthesized and
called EP1572 UMV1843 [Aib-D-Trp-DgTrp-CHO]). EP1572
shows binding potency to the GHS-R in animal and human
tissues similar to that of ghrelin and peptidyl GHS and in-
duces marked GH increase after sc administration in neo-
natal rats. Preliminary human data show that acute iv EP1572
administration (1.0 �g/kg) induces strong and selective in-
creases in GH levels. Moreover, a single oral EP1572 admin-
istration strongly and reproducibly increases GH levels even
after a dose as low as 0.06 mg/kg (106).

MK-0677 resulted in the discovery and cloning of the
GHS-R. The existence of this GHS-R, as shown by mRNA
expression, had been indicated already by binding studies

FIG. 1. Ghrelin is the only known natural peptide in mammalian biology in which acylation of one amino residue is required for at least the
majority of its biological activities. Under the influence of a still unknown acyl-transferase, a hydroxyl group of serine at position 3 of the ghrelin
molecule is octanoylated. This posttranslational modification of ghrelin is essential for binding and activation of the GHS-R 1a, for the
GH-releasing capacity of ghrelin, and most likely also for its action on endocrine axis, energy balance, and glucose homeostasis. Several naturally
occurring variants of ghrelin have been reported based on the acylation at the serine-3 position, including nonacylated, octanoylated (C8:0),
decanoylated (C10:0), and possibly decenoylated (C10:1) ghrelin. Any other synthetic variant of ghrelin with a chemical modification of either
the acyl group or the N-terminal amino residue sequence did not activate or bind the receptor GHS-R 1a. However, ghrelin did still bind and
activate the GHS-R 1a in vitro after modification or even significant deletion of C-terminal amino residues. It however remains unclear whether
the same modalities are relevant in vivo. Although the major active form of human ghrelin is a 28-amino acid peptide with an octanoylation
at the serine-3 position, the vast majority (�80–90%) of circulating ghrelin has been found to be nonacylated. This predominant form of serum
ghrelin seems to be devoid of any effects on endocrine axes or energy balance, as previously expected based on its inability to bind and activate
GHS-R 1a, which is still the only identified ghrelin receptor. However, nonacylated ghrelin does have cardiovascular and antiproliferative effects,
and it seems tempting to speculate that these activities are mediated by yet to be identified receptor families or subtypes (1). In the absence
of further information on the tissue specificity, reversibility, balance, and enzyme kinetics of the (des-) octanoylation process, the information
one can possibly gain from plasma ghrelin quantification is very limited but should include the analysis of both total and acylated ghrelin (17,
131–133).
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(14, 24, 26, 29, 30, 47, 73, 107–119). Studies focusing on the
distribution of the identified GHS-Rs showed a particular
concentration of these receptors in the hypothalamus-pitu-
itary area. However, GHS-R expression and/or the presence
of specific binding sites has been found in other brain areas

and peripheral, endocrine, and nonendocrine animal and
human tissues (1–9, 22, 24–26, 30, 120, 121). Actually, both the
concentration of binding sites and the displacement of pep-
tide-radioligand by ghrelin suggest that the majority of bind-
ing in peripheral tissues is not specific for ghrelin or MK-

FIG. 2. Known biological activities of ghrelin. Some of the effects of ghrelin shown here are believed to be indirectly mediated via pituitary
hormones or hypothalamic neurocircuits and their efferent pathways; others, such as the effect on the cardiovascular system, appear to be direct.
Depending on the origin of the hormone, which is mainly derived from the stomach but also expressed in the pancreas, the hypothalamus, the
pituitary, the duodenum, and other organs, these effects may have endocrine, paracrine, or autocrine character. AVP, Arginine vasopressin.

TABLE 1. Primary structure of ghrelin from domesticated species aligned to human ghrelin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Species

G S S F L S P E H Q R V Q Q R K E S K K P P A K L Q P R Human
G S S F L S P E H Q K T Q Q R K E S K K P P A K L Q P R Gerbil
G S S F L S P E H Q K A Q Q R K E S K K P P A K L Q P R Mouse
G S S F L S P E H Q K A Q Q R K E S K K P P A K L Q P R Rat
G S S F L S P E H Q K L Q Q R K E S K K P P A K L Q P R Dog
G S S F L S P E H Q K V Q Q R K E S K K P A A K L K P R Pig
G S S F L S P E H Q K L ▫ Q R K E A K K P S G R L K P R Cattle
G S S F L S P E H Q K L ▫ Q R K E P K K P S G R L K P R Sheep
G S S F L S P T Y K N I Q Q Q K D T R K P T A R L H R R Chicken
G S S F L S P S ▫ Q R ▫ P Q G K D ▫ K K P P ▫ R V G R R Eel
G S S F L S P S ▫ ▫ ▫ ▫ ▫ Q K P Q N K V K S S R I G R Q Tilapia

Bold and italic indicates that residue is different from that in human; ▫ indicates space added for alignment to the human ghrelin primary
structure.
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0677. The studies using labeled GHRPs overestimate the
concentration of specific ghrelin binding because they exhibit
high capacity and low affinity binding in addition to limited
capacity ghrelin-specific binding. Anyway, hypothalamopi-
tuitary and peripheral distribution of GHS-Rs probably ex-
plains both the GH-releasing effect of GHS and their other
endocrine and nonendocrine biological activities (2, 8, 9, 14,
16, 20, 25, 27, 31–56, 122).

As discovered by Kojima et al. (1) in 1999, ghrelin appeared
to be a 28-residue peptide that is predominantly produced by
the stomach but is also expressed in many other tissues (1–9,
12, 123). Ghrelin is produced in the stomach by the enteroen-
docrine X/A-like cells that represent a major endocrine pop-
ulation in the oxyntic mucosa. The hormonal product of these
cells had not been previously clarified (1, 3, 124–127). Ghrelin
production has also been reported in neoplastic tissues as
gastric and intestinal carcinoids (126, 128) and in medullary
thyroid carcinomas (129).

Ghrelin is the first natural hormone to be identified in
which the hydroxyl group of one of its serine residues is
acylated by n-octanoic acid (1). This acylation is essential for
binding to the GHS-R 1a, for the GH-releasing capacity of
ghrelin, and most likely for its other endocrine actions also
(1, 17, 21, 130) (Fig. 1). Nonacylated ghrelin, which is present
in human serum in far greater quantities than acylated
ghrelin, seems to be devoid of any endocrine action. How-
ever, it is able to exert some nonendocrine actions including
cardiovascular and antiproliferative effects, probably by
binding different GHS-R subtypes or receptor families (3, 27).

There is another endogenous ligand for the GHS-R 1a that
can be isolated from the endocrine mucosa of the stomach.
Des-Gln14-ghrelin has undergone the same process of acy-
lation at its Ser3 residue and is homologous to ghrelin except
that it lacks one glutamine. Des-Gln14-ghrelin is the result of
alternative splicing of the ghrelin gene, and it seems to pos-
sess the same hormonal activities as ghrelin (1, 131). Studies
with several analogs of ghrelin with various aliphatic or
aromatic groups in the side chain of residue 3 and several
short peptides derived from ghrelin as well showed that
bulky hydrophobic groups in the side chain of residue 3 are
essential for maximum agonist activity. In addition, short
peptides encompassing the first four or five residues of
ghrelin were found to functionally activate GHS-R 1a about
as efficiently as the full-length ghrelin. Thus, the entire se-
quence of ghrelin is not necessary for activity; the Gly-Ser-

Ser(n-octanoyl)-Phe segment appears to constitute the active
core required for agonist potency at GHS-R 1a (17, 132).
Hosoda et al. (133) isolated, in the course of purification of
ghrelin from the stomach, human ghrelin of the expected
size, as well as several other ghrelin-derived molecules that
could be classified into four groups by the type of acylation
observed at the serine-3 position. These peptides were found
to be nonacylated, octanoylated (C8:0), decanoylated (C10:0),
and possibly decenoylated (C10:1). The major active form of
human ghrelin is a 28-amino acid peptide octanoylated at the
serine-3 position, as was found for rat ghrelin. Both ghrelin
and the ghrelin-derived molecules were found to be present
in plasma as well as stomach tissue. Del Rincon et al. (134)
pointed out that identification and characterization of the
novel gastric peptide hormone, named motilin-related pep-
tide by Tomasetto et al. (127, 135), were strictly connected to
ghrelin. Motilin-related peptide shows the same amino acid
sequence as ghrelin, reflecting that the same gene encoding
for this peptide was discovered by two different groups and
was given two different names.

That the scientific work on the GHS also led to the dis-
covery of the motilin receptor is not by chance; the motilin
receptor is a member of the GHS-R family having a 52%
identity (112, 117, 118, 127, 134–139). This former orphan G
protein-coupled receptor was isolated based on its high ho-
mology with the GHS-R, and through ligand screening as-
says motilin was identified as its endogenous ligand. How-
ever, unlike ghrelin, acylation of motilin is not needed for
activation of its receptor (112). Prepromotilin, which is also
produced by the enteroendocrine cells of the stomach, is
almost identical with human preproghrelin, except for the
serine-26 residue that is not octanoylated in the prepromo-
tilin-related peptide; however, human ghrelin and motilin
show only 36% homology (1, 112, 117, 127, 134–140). Motilin
and motilin receptors have been well characterized in hu-
mans and dogs, whereas rodents do not have a motilin re-
ceptor. The ability of motilin to exert some stimulatory effect
on GH secretion and some orexigenic effect after central
administration cannot be mediated by the GHS-R 1a, because
motilin does not activate GHS-R 1a (112, 137, 140, 141). On
the other hand, ghrelin does not activate motilin receptors
(142). Therefore, we consider both ghrelin and motilin as
representatives of a novel family of gastrointestinal peptides
contributing to the regulation of diverse functions of the
gut-brain axis. This in itself is a remarkable turn of a story

TABLE 2. Studies of peptidyl and nonpeptidyl GHS

Year Peptidyl GHS (GHRPs) Refs. Nonpeptidyl GHS Refs.

1977 (D-Trp2)-metenkephalin 59, 60, 68, 73
1984 GHRP-6 14, 68, 73, 74, 83
1991 GHRP-1 270, 305
1992 L-692,429 103–105, 256, 257, 261, 468, 469
1993 GHRP-2 263, 470–474
1994 Hexarelin 303, 475–478 L-692,585 272, 285, 479
1995 MK-0677 14, 84–105
1996 EP-51389 167, 480, 481
1998 Ipamorelin 76, 482
1999 NN-703 483–485
2000 CP-424,391 75
2001 SM-130686 486
2002 EP-01572 106
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that started as a field of research focused on GH secretion
alone.

III. The Biology of a Ubiquitously Expressed
Hormone and Its Receptor Family

A. Known and unknown GH secretagogue receptors

In addition to the physiological stimulation by hypotha-
lamic GHRH, the release of GH from the pituitary is stim-
ulated by small synthetic peptidyl and nonpeptidyl mole-
cules called “GH secretagogues” (for reviews, see Refs. 48
and 74). They act through a specific G protein-coupled re-
ceptor (13), the GHS-R, for which the ligand was unknown
until a Japanese group of scientists led by M. Kojima (1)
isolated an endogenous ligand specific for the GHS-R,
ghrelin, from the stomach. The discovery of this novel gastric
hormone, ghrelin, which consists of 28 residues containing
an n-octanoyl modification at serine 3, has been recently
reviewed by Bowers (70), Kojima et al. (143), Inui (52), and
Muccioli et al. (8).

The GHS-R is expressed by a single gene found at human
chromosomal location 3q26.2 (113, 114). Two types of GHS-R
cDNAs, which are presumably the result of alternate pro-
cessing of a pre-mRNA, have been identified and designated
receptors 1a and 1b (13, 14, 114) (for reviews, see Refs. 112,
144, 145; also see Ref. 146). Their sequences do not show
significant homology with other known receptors; the closest
receptor relatives are the neurotensin with 34.9% identity
and motilin 1a with 51.6% identity (113). cDNA 1a encodes
a receptor, named GHS-R 1a, of 366 amino acids with seven-
transmembrane regions and a molecular mass of approxi-
mately 41 kDa. The 1b cDNA encodes a shorter form, named
the GHS-R 1b, which consists of 289 amino acids with only
five-transmembrane regions (13). GHS-R 1b is derived by
readthrough of the intron, which produces an in-frame stop
codon so that the potential translation product has an iden-
tical N terminus with transmembrane domains 1–5 but lacks
transmembranes 6 and 7. Although this process does not
seem to end in the transcription of a protein, GHS-R 1b
expression, however, is widespread in many endocrine and
nonendocrine tissues, but its significance remains to be de-
termined (13, 22, 112).

The human GHS-R 1a shares 96 and 93% identity with the
rat and pig GHS-R 1a, respectively, and the existence of this
receptor can apparently be extended to pre-Cambrian times
because amino acid sequences strongly related to human
GHS-R 1a have been identified in teleost fish (117). These
observations strongly suggest that the GHS-R 1a is highly
conserved across the species and probably does have an
essential biological function.

The binding of ghrelin and synthetic GHS (such as the
peptidyl GHRP-6 and the nonpeptidyl derivative MK-0677)
to the GHS-R 1a activates the phospholipase C signaling
pathway, leading to increased inositol phosphate turnover
and protein kinase C activation, followed by the release of
Ca2� from intracellular stores (14, 147). GHS-R activation
also leads to an inhibition of K� channels, allowing the entry
of Ca2� through voltage-gated L-type, but not T-type chan-
nels (148, 149). Unlike the GHS-R 1a, the GHS-R 1b failed to

bind GHS and to respond to GHS (13), and its functional role
remains to be defined. Synthetic GHS and ghrelin, as well as
des-Gln14-ghrelin, a natural isoform that has the same GH-
releasing activity as ghrelin (131), bind with high affinity to
the GHS-R 1a; their efficacy in displacing [35S]MK-0677 or
[125I][Tyr4]ghrelin binding to pituitary membranes correlates
well with concentrations required to stimulate GH release
(14, 21, 150). The n-octanoyl group at serine 3 of the ghrelin
molecule seems to be essential for the binding and bioactivity
of the hormone, at least in terms of GH release. In fact, the
nonacylated ghrelin, which circulates in amounts far greater
than the acylated form (131), does not displace radiolabeled
ghrelin from its hypothalamic or pituitary binding sites (21)
and has no GH-releasing or other endocrine activities in rat
(1, 70). In man also, the administration of nonacylated ghrelin
does not induce any change in the hormonal parameters or
in glucose levels, indicating that at least in humans nonacy-
lated ghrelin does not possess endocrine activities of human
acylated ghrelin (151).

Interestingly, it has been reported that ghrelin binds a
species of high-density lipoprotein (HDL) associated with
the plasma esterase, paraoxonase, and clusterin. Both free
ghrelin and paraoxon, a substrate for paraoxonase, can in-
hibit this interaction. Some endogenous ghrelin is found to
copurify with HDL during density gradient centrifugation.
This interaction links the orexigenic peptide hormone ghrelin
to lipid transport and a plasma enzyme that breaks down
oxidized lipids in low-density lipoprotein (see Fig. 4). Fur-
thermore, the interaction of the esterified ghrelin with a
species containing an esterase suggests a possible mecha-
nism for the conversion of ghrelin to des-acyl ghrelin (152).

Recent studies, dealing with the minimal sequence of
ghrelin needed to activate the GHS-R 1a, have shown in
HEK-293 cells transfected with the human GHS-R 1a that
short octanoylated peptides encompassing the first four to
five residues of ghrelin were capable of increasing intracel-
lular Ca2� almost as efficiently as the full-length ghrelin (17,
130). Based on these in vitro results, it has been postulated
that the active core required for the activation of the receptor
is the Gly-Ser-Ser(n-octanoyl)-Phe sequence. Indeed, the
amino-terminal 7 residues of ghrelin are conserved between
species (Table 1). However, the ability of the above ghrelin
derivatives to activate the GHS-R 1a in transfected cells does
not seem indicative of their capability to stimulate GH se-
cretion from somatotroph cells. In fact, we have recently
demonstrated that octanoylated ghrelin-(1–4) or octanoy-
lated ghrelin-(1–8) is unable to stimulate GH release in rats,
and neither of these two truncated molecular forms of ghrelin
is effective in displacing [125I][Tyr4]ghrelin from its binding
sites in membrane preparations from human hypothalamus
or pituitary gland (153). Possibly, overexpression of the
GHS-R 1a or lack of the other receptor populations physio-
logically present in pituitary cells may be responsible for the
reported activity of ghrelin analogs in HEK-293 cells (17,
130). Other study groups working on the same cells express-
ing human or pig GHS-R 1a have found that adenosine also
activates the transfected receptor but, similar to short ghrelin
analogs, does not possess a biological counterpart able to
stimulate GH secretion and amplify the GHRH effects on
normal pituitary cell cultures (154). It has been suggested that
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adenosine is a partial agonist of the GHS-R 1a and binds to
a receptor site distinct from the binding pocket recognized by
MK-0677 and GHRP-6 (155). More recently, we have re-
ported (19) that the GHS-R is also bound by another endog-
enous molecule such as cortistatin (CST), a neuropeptide
homologous to somatostatin (SS), which itself is unable to
recognize the GHS-R 1a. This finding supports the hypoth-
esis that natural ligands other than ghrelin or adenosine
might modulate the activity of the GHS-R.

Expression of the GHS-R 1a was shown in the hypothal-
amus and anterior pituitary gland (13, 30, 156, 157), consis-
tent with its role in regulating GH release. The GHS-R 1a is
largely confined to somatotroph pituitary cells and to the
arcuate nucleus (13, 14, 158), a hypothalamic area that is
crucial for the neuroendocrine and appetite-stimulating ac-
tivities of ghrelin and synthetic GHS (120, 159). This is sup-
ported by the demonstration that ghrelin, as well as synthetic
GHS, effectively stimulates the expression of some markers
of neural activity (c-fos and early growth response factor-1)
in arcuate nucleus neurons (160, 161). The activated hypo-
thalamic cells include GHRH-containing neurons, but also
cells expressing the appetite-stimulating neuropeptide Y
(NPY) (71, 158) and the endogenous melanocortin receptor
inverse agonist, agouti-related protein (AGRP) (31). Detect-
able levels of GHS-R 1a mRNA were also demonstrated in
various extrahypothalamic areas such as the dentate gyrus of
the hippocampal formation, CA2 and CA3 regions of the
hippocampus, the pars compacta of the substantia nigra, the
ventral tegmental area and dorsal and medial raphe nuclei
and Edinger-Westphal nucleus, pons and medulla oblongata
(24, 30, 162), possibly indicating its involvement in as yet
undefined extrahypothalamic actions. More recent localiza-
tion studies have demonstrated GHS-R expression in mul-
tiple peripheral organs, although the RT-PCR primers were
generally not selected to differentiate GHS-R 1a from 1b (1–5,
7–9, 22, 24–26, 30, 120, 121, 163). mRNA was shown in the
stomach and intestine (3), pancreas (30), kidney (4), heart and
aorta (38, 164, 165), as well as in different human pituitary
adenomas (6, 163) and various endocrine neoplasms of lung
(166), stomach (126), and pancreas (7, 121, 163). These data
are in accord with the reported observations indicating, for
ghrelin and synthetic GHS, broader functions beyond the
control of GH release and food intake (see Section V.C).

Ghrelin and GHS compounds exhibit a high binding
affinity to the cloned GHS-R 1a. However, there is evidence,
indicating that there are additional binding sites for
GHS. Specific binding sites for Tyr-Ala-hexarelin [Tyr-
Ala-His-D-2Methyl-Trp-Ala-Trp-D-Phe-Lys-NH2], other
peptidyl GHS (GHRP-2 [D-Ala-D-�Nal-Ala-Trp-D-Phe-Lys-
NH2], GHRP-6, and hexarelin [His-D-2Methyl-Trp-Ala-Trp-
D-Phe-Lys-NH2]) with a receptor density that at least equals
the density that was found in the pituitary, have been found
in rat and human heart (24, 25, 107, 167, 168), as well as in
a wide range of other nonendocrine peripheral human tis-
sues such as lung, arteries, skeletal muscle, kidney, and liver
(20, 26). These binding sites are presumably not ghrelin
receptors, because they show a very low binding affinity for
ghrelin (26). As reported by Bodart et al. (167), the cardiac
GHS-R has a molecular mass larger (84 kDa) than that of
GHS-R 1a and shows no homology with this receptor. The

predicted amino acid sequence of the GHS-R expressed in
heart muscle is similar to that of CD36, a multifunctional
receptor also known as glycoprotein IV (49).

The functional significance of receptors for peptidyl GHS
in peripheral nonendocrine tissues is still unknown. Some
findings in the cardiovascular system suggest that these
binding sites could mediate GH-independent cardioprotec-
tive activities exerted by peptidyl GHS, but not by ghrelin
(see Section V.C).

Recently, we have found ghrelin receptors with a binding
profile different from the GHS-R 1a ghrelin receptor in hu-
man thyroid and breast tumors, as well as in related cancer
cell lines (27, 169). In fact, binding of acylated ghrelin to these
receptors is surprisingly inhibited by nonacylated ghrelin, as
well as by some synthetic GHS (27, 169); a receptor with the
same binding profile has been demonstrated at the cardio-
vascular level (8, 170). It has to be emphasized that nonacy-
lated ghrelin, although unable to bind to the classical GHS-R
1a and to show any endocrine activity, exerts antiprolifera-
tive (27) and cardioprotective effects (171). This is illustrated
in the experiment of Fig. 1 that compares the ability of
unlabeled ghrelin and nonacylated ghrelin to displace
[125I][Tyr4]ghrelin binding to membranes from cultured pi-
tuitary explants, H9C2 cardiomyocytes, and MCF-7 mam-
mary carcinoma cells.

B. Known and unknown ligands of the GH
secretagogue receptors

Taking into account the GHS-R 1a as receptor of reference,
acylated ghrelin and Des-Gln14-ghrelin are its natural li-
gands; in fact, both molecules possess the same endocrine
activities (150).

There are also other natural ligands of the GHS-R 1a.
Besides adenosine that binds and activates the receptor (112,
154, 155), it has been demonstrated that CST, a neuropeptide,
binds with high affinity the GHS-R 1a in human hypothal-
amus and pituitary tissues (19, 112, 154, 172). CST is a re-
cently described neuropeptide showing high structural ho-
mology with SS (173–188) that binds to all SS receptor
subtypes with an affinity (1–2 nm) close to that of SS (103, 189,
190). In fact, in humans as well as in animals, CST and SS
exhibit the same endocrine activities (191, 192). The existence
of specific receptors that selectively bind SS or CST has been
hypothesized (189, 190), based on evidence that CST pos-
sesses an action profile different from SS (189, 193, 194) and
on the fact that CST and SS are often coexpressed in the same
neurons but are regulated by different stimuli (189, 195, 196).
Given these findings, the ability of CST to bind the GHS-R
1a is of particular relevance because SS and its fragments do
not bind the same receptor (19, 112, 154, 172). Interestingly,
the classical synthetic SS analogs, i.e., octreotide, lanreotide,
and vapreotide, bind the GHS-R 1a with an affinity lower
than that of CST (19, 112, 154, 172). These findings have
generated the hypothesis that CST could play a potential role
in the control of somatotroph secretion via both SS and GHS-
Rs. Where this is the case, CST would represent the link
between ghrelin and the SS/CST system that had not pre-
viously been demonstrated.

On the other hand, the GHS-R 1a is unlikely to be the only
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GHS-R (see Section III. A). It has already been demonstrated
that a GHS-R subtype able to bind nonacylated as well as
acylated ghrelin exists and likely mediates biological activ-
ities (27). This report might provide another explanation
besides the existence of different pockets within the GHS-R
1a to explain the observation that different molecules are able
to bind, but not activate it (112).

Another GHS-R subtype likely mediates the influence of
ghrelin on insulin secretion and glucose metabolism, because
this effect is not shared by synthetic peptidyl GHS that gen-
erally mimic ghrelin actions (35). The cardiovascular receptor
that only binds peptidyl GHS is unlikely to be a GHS-R,
because it does not bind ghrelin (25, 26, 49, 49, 167, 197).

Given this complexity, it is clear that further studies are
required to clarify whether ghrelin is the sole ligand or one
of a number of ligands activating the GHS-R 1a and whether
that receptor used for ghrelin isolation is the sole receptor or
one of a group of receptors for such ligands.

IV. Control of Ghrelin Secretion: Indications for Its
Importance in Biology

Although the majority of circulating ghrelin originates
from the stomach and the small bowel (3, 124), ghrelin is
expressed in a variety of tissues that include the stomach, the
intestine, the pituitary, the placenta, lymphocytes, the testes,
the lungs, the kidney, the pancreas, and the hypothalamus
(1–12).

The activation level of the ghrelin receptor(s) is the pa-
rameter that is decisive for ghrelin action. Regulation of the
extent and magnitude of ghrelin action therefore involves
several mechanisms that are, at least in part, independent.
These mechanisms include: 1) the regulation of transcription
and translation of the ghrelin gene; 2) the level of enzymatic
activity of the putative acyl transferase that is responsible for
the posttranslational octanoylation of the ghrelin molecule;
3) secretion rates of the bioactive ghrelin molecule; 4) puta-
tive enzymatic processes deactivating circulating ghrelin; 5)
possible influence of ghrelin binding proteins on the hor-
mone’s bioactivity; 6) variable accessibility of target tissue
(i.e., blood-brain barrier transport); 7) clearance or degrada-
tion of ghrelin by kidney or liver passage; 8) circulating
concentration of additional endogenous ligands or other pos-
sibly cross-reacting hormones; 9) the amount of expression
of ghrelin receptor(s) in target tissue; and 10) their sensitivity
to the level of intracellular signaling mechanisms. Most stud-
ies to date have focused on changes in gastric ghrelin mRNA
expression or variation of circulating ghrelin concentration
as quantified by immunoassay measurements from plasma
samples. The search for a ghrelin activating acyltransferase,
for possible additional endogenous ligands to ghrelin recep-
tor(s), and for specific ghrelin binding proteins is still ongo-
ing. However, a few studies have started to shed light on
important issues such as blood-brain barrier transport of
ghrelin (198) and the regulation of ghrelin receptor expres-
sion, i.e., in the hypothalamus (199). Analysis of the regula-
tion of ghrelin expression levels in tissues other than stomach
is hardly possible due to the small amounts of peptide
present in these organs.

The measurement of ghrelin immunoreactivity involves
technical difficulties, which imply that all results based on
the concentration of circulating ghrelin as quantified by im-
munoassays should still be interpreted with much caution.
Although commercially available ghrelin immunoassays are
very likely to reflect total ghrelin peptide concentration, re-
liable methods to routinely quantify individual ghrelin spe-
cies are still not available. An ideal tool would be a sensitive
and specific sandwich immunoassay based on two mono-
clonal antibodies recognizing an epitope associated with the
octanoyl side chain and another one at the C-terminal end of
the 28-amino residue peptide. Existing assays targeting the
C-terminal end of the molecule miss potential crucial
changes in the percentage of circulating octanoylated ghre-
lin. Immunoassays targeting the octanoyl side chain of the
molecule might suffer from interference from other octanoy-
lated molecules, which are likely to exist. Therefore, plasma
ghrelin levels as described by several research groups vary
according to the antiserum used and are influenced by vary-
ing techniques, such as the use of an additional extraction
step. Furthermore, there are controversial data on the sta-
bility of ghrelin in plasma samples, the influence of storing
time and thaw/freeze cycles, pH changes, or the necessity for
enzyme-blocking additives to plasma samples before mea-
suring ghrelin. Although absolute plasma ghrelin levels and
ghrelin reference standards still have to be determined, it
appears reasonable to investigate ghrelin regulation and
physiology by measurement of relative differences of circu-
lating total ghrelin levels using available immunoassays. In
the following section, existing knowledge regarding the reg-
ulation of ghrelin expression and secretion is summarized,
although this current model might have to be revised sub-
stantially when details of the unknown mechanisms and
open questions mentioned above become available.

Ghrelin mRNA expression as well as ghrelin peptide have
been localized most impressively in the oxyntic glands, spe-
cifically the X/A-like cells of the gastrointestinal tract. These
cells represent about one fourth of all endocrine cells in the
oxyntic mucosa, whereas other cells within these glands,
such as histamine-rich enterochromaffin-like cells (�70%)
and D-(SS) cells (10%), are not ghrelin positive (3, 124).
Ghrelin is found from the stomach to the colon with caudally
decreasing density of expression, which is in agreement with
the fact that X/A-like cells are not strictly confined to oxyntic
mucosa (3, 124). Ghrelin-containing enteroendocrine cells
mostly have no continuity with the lumen, probably respond
to physical and/or chemical stimuli from the basolateral
side, and are closely associated with the capillary network
running through the lamina propria (3, 124). A recent study
shows that ghrelin-secreting cells occur as open- and closed-
type cells (open or closed toward the lumen) with the number
of open-type cells gradually increasing in the direction from
the stomach to the lower gastrointestinal tract (200).

Although a classical endocrine role for ghrelin as a peptide
hormone that is secreted into this capillary network is evi-
dent, local paracrine activities of ghrelin might play an ad-
ditional role (3, 124). Removal of the stomach or the acid-
producing part of the stomach in rats reduces serum ghrelin
concentration by approximately 80%, further supporting the
view that the stomach is the main source of this endogenous
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GHS-R ligand (3, 124). However, in a recent study, plasma
levels of ghrelin after total gastrectomy gradually increased
again (133), suggesting that the stomach is the major source
of circulating ghrelin but that other tissues can compensate
for the loss of ghrelin production after gastrectomy (201).
Cummings and co-workers (202–204) showed that total
plasma ghrelin is hardly detectable after gastric bypass sur-
gery, a phenomenon that is interpreted as a shutdown of
gastric ghrelin-secreting cells due to a lack of contact with
ingested nutrients. On the other hand, no evidence for Roux-
en-Y gastric bypass surgery per se having an effect on ghrelin
levels, independent of weight loss, was obtained (205).

Small concentrations of ghrelin are found in the pancreas
(206), where ghrelin immunoreactivity was localized in a
subgroup of endocrine cells that are also immunopositive for
pancreostatin. Neither colocalization of ghrelin and entero-
chromaffin-like cells nor colocalization of ghrelin and D cells
was found in the pancreas. Therefore, it was concluded that
the ghrelin-positive cells must belong to the third subpopu-
lation, the A cells (124). We have recently shown that ghrelin
is produced by a fraction of endocrine pancreatic cells,
namely the insulin-producing H cells, as confirmed by dou-
ble immunofluorescence studies (169). Ghrelin mRNA and
ghrelin peptide have also been detected in rat and human
placenta in which they are expressed predominantly in cy-
totrophoblast cells and very sporadically in syncytiotropho-
blast cells. A pregnancy-related time course, represented by
an early rise of ghrelin expression in the third week and
decreasing in the latest stages of gestation, but still detectable
at term, was found in rats. In human placenta, ghrelin is
mainly expressed in the first half of pregnancy and is not
detectable at term (5). Involvement of ghrelin in fetal-
maternal interaction via autocrine, paracrine, or endocrine
mechanisms is discussed (5). In addition to the presence of
GHS-R in pituitary cells, ghrelin mRNA expression and
ghrelin immunopositive cells were detected in normal pitu-
itary cells as well as in pituitary tumors (6, 22, 163). This
suggests a possible autocrine or paracrine role for hypophy-
seal ghrelin, although only about 5% of the detected ghrelin
peptide derived from the pituitary has been found to be
octanoylated (6, 163); Ghrelin synthesis has been shown by
the use of real-time PCR and direct sequencing of the PCR
product in corticotroph, thyrotroph, lactotroph, and soma-
totroph cells of the pituitary (6, 163), whereas the highest
levels of ghrelin expression were found in nonfunctioning
adenomas, moderate ghrelin levels were found in GH-pro-
ducing adenomas and gonadotropin-producing adenomas,
and the lowest level was found in prolactinomas (6, 163). The
same group detected small amounts of ghrelin in the adrenal
glands, esophagus, adipocytes, gall bladder, muscle, myo-
cardium, ovary, prostate, skin, spleen, thyroid blood vessels,
and liver using real-time PCR (22). By combinatory use of
reverse-phase HPLC and RIA of purified aliquots, produc-
tion of ghrelin in mouse kidney was shown in greater abun-
dance than in mouse plasma. In addition, preproghrelin pro-
duction was shown in rat mesangial cells and mouse
podocytes, indicating the production of ghrelin in kidney,
glomerulus, and renal cells and suggesting possible para-
crine roles for ghrelin in the kidney (4). In several regions of
the brain, ghrelin was detected by means of immunohisto-

chemistry. However, the location of the few ghrelin-positive
neurons that were identified depends on the recognized
epitope of the ghrelin antiserum used (51, 207). Very recently,
ghrelin expression has been demonstrated in a previously
uncharacterized group of neurons adjacent to the third ven-
tricle. These neurons send efferents onto NPY, AGRP, pro-
opiomelanocortin (POMC), and CRH neurons, suggesting
that local ghrelin would represent a novel regulatory circuit
controlling energy homeostasis (Fig. 3) (123). However,
ghrelin found in the hypothalamus still has to be considered
as possibly derived from the periphery, and the participation
of hypothalamic ghrelin in neuropeptidergic energy balance
control mechanisms remains questionable (51). Human
ghrelin as well as GHS-R mRNA expression was shown by
real time-PCR and confirmed by DNA-sequencing in human
T-lymphocytes, B-lymphocytes, and neutrophils from ve-
nous blood of healthy volunteers. Large interindividual dif-
ferences in ghrelin mRNA expression levels were described;
however, cell type and maturity of the cells did not seem to
have an influence on ghrelin production in immune cells (9,
208). Interestingly, it has recently been shown that small-
molecule GHS have a considerable immune-enhancing effect
(9, 208).

In summary, ghrelin is expressed primarily by the stomach
and secondarily by lower parts of the gastrointestinal tract.
Ghrelin expression levels in other organs are relatively low
in comparison, and although its physiological significance as
a paracrine factor in these tissues is the subject of ongoing
studies, an endocrine role for extragastrointestinal ghrelin
appears to be unlikely. Published studies on the regulation
of ghrelin expression have therefore primarily focused on
gastric ghrelin. Additional caution, however, has to be used
by extrapolating from studies on ghrelin expression or se-
cretion in rodents to the physiological regulation of ghrelin
in humans.

Only a few determinants of circulating ghrelin concentra-
tion have been identified to date. Spontaneous ghrelin se-
cretion is pulsatile in rats (44), and 24-h ghrelin variation is
reported in humans by some (202, 209), but not by others
(210). It is unclear whether aging is a determinant of serum
ghrelin concentrations. Ghrelin secretion is reported to be
sexually dimorphic in humans, with women in the late fol-
licular stage having higher levels than men (210). Among
determinants of ghrelin secretion, the most important appear
to be insulin (211–217), glucose (33, 218–222), and SS (210,
223–227). Possibly, GH (224, 228–232), leptin (204, 233–237),
melatonin (238), thyroid hormones (239), glucagon (240), and
the parasympathetic nervous system (32, 241) also play a role
in ghrelin metabolism. In mice, rats, cows, and humans,
ghrelin mRNA expression levels or circulating ghrelin levels
are increased by food deprivation and appear to be decreased
postprandially (33, 137, 202, 209, 242–246). This phenome-
non, which has been confirmed by several study groups in
the recent past, further supports the emerging concept of
ghrelin as an endogenous regulator of energy homeostasis.
In addition to fasting, ghrelin expression can be stimulated
in rats by insulin-induced hypoglycemia, leptin administra-
tion, and central leptin gene therapy (233, 243). Ingestion of
sugar suppresses ghrelin secretion in rats (33). These obser-
vations indicate a direct inhibitory effect of glucose/caloric

van der Lely et al. • Aspects of Ghrelin Endocrine Reviews, June 2004, 25(3):426–457 433



intake on ghrelin-containing X/A-like cells in the oxyntic
mucosa of the rat stomach rather than an exclusively insulin-
mediated effect. That insulin is an independent determinant
of the circulating ghrelin concentration has recently been
shown by several study groups using hyperinsulinemic
euglycemic clamps in humans (211, 212). These findings
add further evidence connecting ghrelin to mechanisms
governing energy balance and the regulation of glucose
homeostasis.

Further insight into the apparently complex mechanisms
regulating ghrelin secretion is based on studies showing an
increase of circulating ghrelin levels in rats after surgical
interventions such as vagotomy and hypophysectomy (32,
228). Human GHD, however, is not associated with increased
plasma ghrelin levels (247). On the other hand, administra-
tion of synthetic GH to rats decreases circulating ghrelin
levels, and therapeutic interventions causing normalization
of GH levels in patients with acromegaly increase ghrelin
levels (228–230). These partial, somewhat contradictory, ob-

servations could be due to species-specific differences be-
tween rodents and humans, or they could indicate that an
acute, but not chronic, change of GH levels modulates
ghrelin concentration. An increase in circulating ghrelin lev-
els in rats with age, up to 90 d (248), has not been confirmed
as yet for human populations. Early studies seem to indicate,
however, that human ghrelin secretion decreases with age
during childhood (249). A pathophysiological factor that
might increase circulating ghrelin levels is the production of
ghrelin by certain endocrine tumors of the stomach and the
intestine such as carcinoids (126). A recent, very intriguing
series of clinical studies by Cummings et al. (202, 209) indi-
cates that each daily meal is followed by decreases of circu-
lating ghrelin levels, most likely reflecting acutely reduced
ghrelin secretion from the gastrointestinal tract. The authors
speculate in addition that an observed premeal rise of cir-
culating human ghrelin levels might reveal a role for ghrelin
in meal initiation. This theory fits well with the observation
that ghrelin administration in healthy volunteers causes hun-

FIG. 3. Within a complex neuroendocrine network, afferent signals from the periphery are continuously indicating acute and chronic changes
of energy balance, whereas integrative regulatory circuits in the CNS are modulating efferent pathways to adjust orexigenic drive, energy
expenditure, and nutrient metabolism accordingly. Ghrelin is thought to be significantly involved in this neuroendocrine network regulating
energy balance in at least two ways: 1) as a peripheral hormone from the stomach that, along with other signals such as insulin or leptin, informs
the central energy balance control when energy stores diminish, to increase orexigenic drive and decrease energy expenditure; and 2) as a
hypothalamic neuropeptide expressed in previously unidentified population of neurons adjacent to the third ventricle between the ventromedial
hypothalamus, the dorsal hypothalamus, the paraventricular nucleus, and the arcuate nucleus. Efferents of ghrelin-expressing neurons project
to key circuits of central energy balance regulation and may balance the activity of orexigenic NPY/AGRP with anorectic POMC neurons to
modulate a resulting efferent message, which is believed to be mediated in part by TRH and CRH. Dotted lines indicate indirect effects or actions,
whereas question marks indicate unproven actions (51, 233, 351, 352, 353).
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ger (15, 16, 35). Ghrelin might also reflect the acute state of
energy balance, signaling to the central nervous system
(CNS) in times of food deprivation that increased energy
intake and an energy-preserving metabolic state are desir-
able (33, 51). In addition, one biological purpose of these
multiple roles of ghrelin might be to ensure the provision of
calories that GH requires for growth and repair.

In summary, ghrelin expression and ghrelin secretion are
mainly influenced by changes in energy balance and glucose
homeostasis, followed by alterations of endocrine axes such
as increasing GH concentrations. Based on the currently
available data, ghrelin therefore seems to be part of a mo-
lecular regulatory interface between the energy homeostasis,
glucose metabolism, and physiological processes regulated
by the classical endocrine axes such as growth and
reproduction.

V. Physiological and Pathophysiological Actions
of Ghrelin

A. Hypothalamic-pituitary actions

1. GH-releasing activity. Ghrelin and synthetic GHS possess
strong and dose-related GH-releasing activity that is more
marked in humans than in animals (1, 14–16, 18, 20, 250–252).
Natural and synthetic GHS stimulate GH release from so-
matotroph cells in vitro (1, 62, 65, 253–265), probably by
depolarizing the somatotroph membrane and by increasing
the amount of GH secreted per cell (258). A stimulatory effect
of GHS on GH synthesis has also been reported by some
authors (260). In vitro, the GH-releasing activity of GHS is
lower than that of GHRH (62, 65, 254, 266). Under this con-
dition, an additive or a true synergistic effect of GHS on
GHRH-stimulated GH has been reported (65, 254–256, 262,
263). At the pituitary level, the stimulatory effect of GHS on
GH secretion from somatotroph cells is abolished by specific
GHS antagonists but not by GHRH antagonists (65, 255, 258).
SS inhibits the stimulatory effect of GHS on GH secretion
from pituitary (253, 254, 266, 267). However, there is evidence
suggesting that GHS could act by antagonizing the inhibitory
activity of SS on GH release by counteracting its hyperpo-
larizing effect on somatotroph cell membranes (258).

The GH-releasing activity of GHS is clearly greater in
hypothalamic-pituitary preparations than in pituitary prep-
arations (268), in agreement with evidence that their stimu-
latory effect on GH secretion is greater in vivo than in vitro (65,
269). Indeed, in vivo, GHS show synergistic effects on GHRH-
stimulated GH release (65, 270) and prevent the normal cyclic
refractoriness to GHRH (269). To confirm that the most im-
portant action of ghrelin and synthetic GHS to release GH
takes place at the hypothalamic level, the GH-releasing effect
of GHS is markedly reduced, although not abolished, in
animals with lesions of the pituitary stalk (271–273).

At the hypothalamic level, ghrelin and GHS act via me-
diation of GHRH-secreting neurons as indicated by evidence
that passive immunization against GHRH, as well as pre-
treatment with GHRH antagonists, reduces their stimulatory
effect on GH secretion (65, 269, 274–276). An increased re-
lease of GHRH in portal blood of the pituitary after GHS
administration has also been shown in sheep (277). In terms

of GH release, GHS are active in dwarf mice (278) but not in
the lit/lit mouse, which has no pituitary GHRH receptors
(279). However, in both GHD rats and lit/lit mice, systemic
administration of GHS activates a subpopulation of hypo-
thalamic arcuate neurons where the highest density of
GHRH-secreting neurons is present. Furthermore, because
the lit/lit mouse pituitary does not release GH after GHS
administration, the finding that the central actions of GHS
remain intact in these animals suggests the possible existence
of two subpopulations of putative GHS-Rs (280, 281).

At the hypothalamic level, ghrelin and GHS do not inhibit
SS secretion in vitro in rats; however, some inhibition of
hypothalamic SS secretion after exposure to GHS was ob-
served in vivo in pigs (137, 227, 282–284). Interestingly, GHS
likely act as functional SS antagonists at either the hypotha-
lamic or the pituitary level (71, 258). In vitro and in vivo, GHS
and GHRH induce homologous but not heterologous de-
sensitization (61, 65, 78, 254, 255, 262, 263, 266, 269). Pro-
longed administration of GHS in animals increases IGF-I
levels (61, 87, 93, 267, 285, 286), indicating that they are able
to enhance the activity of the GH/IGF-I axis.

As anticipated, ghrelin and synthetic GHS show their most
potent GH-releasing activity in humans (1, 14–16, 18, 20,
250–252) and in animals in vivo because GHS and GHRH are
synergistic, indicating that they act, at least partially, via
different mechanisms (14, 20, 71, 120). Nevertheless, GHS
require GHRH activity to fully express their GH-releasing
effect (14, 20, 71, 120). In humans, the GH response to GHS
is strongly inhibited, although not abolished, by GHRH re-
ceptor antagonists as well as by hypothalamopituitary dis-
connection (272, 287–289). This is in agreement with the
assumption that the most important action of GHS takes
place at the hypothalamic level (14, 20, 61, 63, 65, 120). More-
over, patients with a GHRH receptor deficiency show no
increase in GH secretion in response to GHS stimulation
(290–292) but maintain their ability to increase PRL as well
as ACTH and cortisol secretion after GHS stimulation
(290–292).

There is evidence, both in humans and in animals, that
ghrelin and synthetic GHS can also act as functional SS an-
tagonists at both the pituitary and hypothalamic levels (20,
71, 191, 218, 227, 258, 293). In fact, in humans the GH response
to ghrelin and GHS is not enhanced by inhibition of SS
release (induced by indirect cholinergic agonists or arginine),
whereas it is partially refractory to the inhibitory effect of
substances acting via stimulation of hypothalamic SS secre-
tion (such as acetylcholine receptor antagonists, �-adreno-
receptor agonists, glucose) (20, 191). Indeed, ghrelin and
GHS are even partially refractory to the inhibition of sub-
stances that act on the pituitary somatotroph cells, such as
free fatty acids and even to exogenous SS (20, 191, 293, 294).
GHS are also partially refractory to the negative feedback of
GH itself and to the negative feedback of IGF-I action (193,
295, 296).

In humans, as in animals, there is evidence that GHS and
GHRH induce homologous, but not heterologous, desensi-
tization (64, 218, 261, 297–302). Homologous desensitization
to the activity of GHS has been shown during GHRP infusion
(297, 299, 300), but not after intermittent oral or intranasal
daily administration of the peptide for up to 15 d (303, 304).
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On the other hand, prolonged administration of GHS by the
parenteral, intranasal, or oral route enhances spontaneous
GH pulsatility over 24 h and increases IGF-I levels in normal
young adults, as well as in short children and elderly subjects
(11, 85, 86, 299, 300, 304–306).

The GH-releasing effect of GHS undergoes marked age-
related variations, increasing at puberty. It plateaus in adult-
hood and decreases during further aging (20). The mecha-
nisms underlying these variations differ by age. The
enhanced GH-releasing effect of GHS at puberty, for in-
stance, is caused by the positive influence of increased serum
estrogen levels, which increase GHS-R expression (110, 196,
307–311). However, estrogen insufficiency does not fully ex-
plain the reduced GH response to GHS in postmenopausal
women (20, 196, 312–314). In agreement with the reduction
in hypothalamic GHS-Rs in human aging, the GH response
to hexarelin in elderly subjects is further increased, but not
restored, by supramaximal doses (20, 24, 307). The most
important mechanism accounting for reduced GH-releasing
activity of GHS in aging is probably represented by age-
related variations in neural control of somatotroph function,
including GHRH hypoactivity and somatostatinergic hyper-
activity (20, 314). On the other hand, it has also been hy-
pothesized, but not proven, that the age-related decline in
GH secretion might reflect a decrease in activity of the en-
dogenous GHS system (i.e., ghrelin release and/or receptor
expression) (24, 70, 314, 315). As with GHS, the GH-releasing
effect of ghrelin is independent of gender but undergoes
age-related decrease. Again, the effect of ghrelin on lac-
totroph and corticotroph secretion is age and gender inde-
pendent (316).

Despite the strong GH-releasing effects of ghrelin and
GHS, whether GH release is the most important physiolog-
ical action of ghrelin has been recently questioned. In fact,
GHRH antagonist strongly inhibits 24-h GH secretion,
whereas it does not affect circulating ghrelin levels (210).
Moreover, ghrelin does not mediate the GH response to
provocative stimuli such as insulin-induced hypoglycemia
(213, 214), as well as GH rebound after withdrawal of SS
infusion (223). These observations are in agreement with
evidence from animal studies showing that ghrelin secretion
is pulsatile and is associated much more with food intake
than with GH pulses (44).

Theoretically, ghrelin or GHS could have diagnostic and
therapeutic implications based on the strong and reproduc-
ible GH-releasing effects of orally active GHS.

Particularly when combined with GHRH, ghrelin and
GHS can be used for one of the most potent and reliable
stimulation tests to evaluate the capacity of the pituitary to
release GH for the diagnosis of GHD (252, 317–320). Pro-
vided that appropriate cut-off limits are established, these
tests using GHS for the diagnosis of GHD are as sensitive and
specific as an insulin tolerance test, the gold standard test for
the diagnosis of GHD (252, 318, 319). Long-acting and orally
active ghrelin analogs might represent an anabolic treatment
in frail elderly subjects. This potential treatment modality is
based on the rationale that age-related reduction in the ac-
tivity of the GH/IGF-I axis probably accounts for changes in
body composition, structure functions, and metabolism in
normal elderly subjects that are remarkably similar to those

in GHD adults (321, 322). Also, the potential pituitary GH
release in aged subjects is still remarkably intact, given the
fact that the appropriate stimuli are used (322). Finally, GH-
releasing substances would represent a more physiological
approach to increase endogenous GH pulsatility than a sin-
gle daily dose of recombinant human GH (321, 322).

At present, there is no definite evidence that shows the
therapeutic efficacy of ghrelin analogs as anabolic agents
acting via rejuvenation of the GH/IGF-I axis in elderly sub-
jects, although some benefits in osteoporosis have been re-
ported (99, 102).

2. PRL- and ACTH-releasing activities. Activity of both ghrelin
and synthetic GHS is not fully specific for GH, because it also
includes stimulatory effects on both the lactotroph and cor-
ticotroph system (16, 18, 20, 63, 250, 323, 324). However, some
synthetic GHS that exclusively stimulate GH secretion have
been reported (106). The stimulatory effect of ghrelin and its
analogs on PRL secretion in humans is far less age and
gender dependent than the effect on GH secretion (316).

The stimulatory effect of GHS on the activity of the
hypothalamus-pituitary-adrenal axis in humans is re-
markable and similar to that of the administration of nal-
oxon, vasopressin, and even CRH. Interestingly, the effect
of ghrelin on ACTH secretion is even more pronounced
than that elicited by synthetic GHS (16, 18, 69, 325–330).
However, this ACTH release after GHS administration
appears to be an acute neuroendocrine effect that atten-
uates during prolonged treatment (14, 20, 70, 85, 86, 285,
331).

The GHS-induced ACTH release is independent of gender
but shows peculiar age-related variations (331). It increases
at puberty, then shows a reduction in adulthood and, again,
a trend toward an increase in aging when the GH response
to these molecules is clearly reduced (191, 316, 325, 331).

Under physiological conditions, the ACTH-releasing ac-
tivity of GHS is entirely mediated via the CNS (20, 272, 331,
332). These mechanisms via the CNS not only include CRH-
and/or vasopressin-mediated actions (20, 137, 325, 327, 328,
330, 331, 333) but also via NPY and/or �-aminobutyric acid
(GABA) (160, 283, 334). The ACTH response to natural and
synthetic GHS is generally sensitive to the negative cortisol
feedback mechanism (20, 105, 331, 334). However, the stim-
ulatory effect of ghrelin and GHS on corticotroph secretion
is exaggerated and higher than that of human CRH in pa-
tients with pituitary ACTH-dependent Cushing’s disease,
probably reflecting a direct action of ghrelin and GHS on the
pituitary ACTH-secreting tumor cells (20, 121, 331, 335–337).
Interestingly, the administration of CRH to humans does not
induce any significant increase in ghrelin secretion (230). In
agreement with the presence of ghrelin and GHS-R expres-
sion in ectopic ACTH-secreting tumors, exaggerated ACTH
and cortisol response to GHS has also been observed in
patients with ectopic ACTH-dependent Cushing’s syndrome
(121, 163, 166, 331). These observations, however, reduce the
potential use of GHS in testing ACTH secretion to distin-
guish patients with pituitary from ectopic ACTH-dependent
hypercortisolism.
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B. Central actions of ghrelin and GHS

1. Effects on food intake. Years before ghrelin was discovered,
sporadic and greatly neglected reports on observations in
rodents indicated that some GHS might possess orexigenic
activity (338–341). Rumors about GHS-induced ravenous
hunger attacks in children with idiopathic short stature oc-
curring within the framework of clinical studies on GHS have
never been officially confirmed. A research group led by S.
Dickson had, however, gathered a substantial amount of
very intriguing data during the last decade showing GHS-
induced neuronal activity in hypothalamic areas that are
currently considered the central processing unit controlling
energy balance (160, 199, 279, 280, 342–345). A dense expres-
sion of the G protein-coupled receptor GHS-R 1a has been
shown on those neurons, and it is bound and activated by
ghrelin as well as by other GHS and GHRP (13, 113, 114, 158).
Still, it was a surprise to many when ghrelin, the endogenous
ligand of the GHS-R (1, 143), emerged as one of the most
powerful orexigenic and adipogenic agents known in mam-
malian physiology (33, 34, 52, 70). At first, it was puzzling to
link adipogenic effects to a hormone that had originally been
discovered as a potent secretagogue of a lipolytic hormone,
GH (346, 347). However, a rapidly growing body of data
reflecting a previously unidentified interface between energy
balance regulation, glucose homeostasis, and hypothalamic
neuropeptides started to make sense as an evolving mosaic
drawn together by ghrelin. Similar to the discovery of the
satiety effects of leptin that indicated adipocytes as endocrine
organs, the observation of ghrelin’s involvement in energy
balance regulation is pointing to an additional endocrine role
for the stomach as well (1, 124). Very recently, ghrelin ex-
pression was found in a previously uncharacterized group of
neurons adjacent to the third ventricle between the dorsal,
ventral, paraventricular, and arcuate hypothalamic nuclei.
These neurons send efferents onto key hypothalamic circuits,
including those producing NPY, AGRP, POMC, and CRH.
Within the hypothalamus, ghrelin mostly stimulated the ac-
tivity of arcuate NPY neurons in the paraventricular nucleus,
so the release of ghrelin may stimulate the release of orexi-
genic peptides and neurotransmitters, thus representing a
novel regulatory circuit controlling energy homeostasis (Fig.
3) (123, 348–352).

Ghrelin administration in rodents causes weight gain (33,
39, 40, 353). This effect would not be as astonishing if it was
merely reflected by longitudinal growth or at least by an
increase in lean mass, effects that one would expect to occur
after stimulation of GH secretion (354). However, a still
growing amount of data generated in rodents clearly showed
that ghrelin-induced weight gain is based on accretion of fat
mass without changes in longitudinal skeletal growth and
with a decrease, rather than an increase in lean (muscle) mass
(33). These findings have not only been confirmed by several
groups but have also been repeated using synthetic ghrelin
receptor (GHS-R) agonists NNC 26-0161 (ipamorelin),
GHRP-2, and GHRP-6 (353, 355). Changes in body weight
induced by ghrelin administration become significant in ro-
dents after no more than 48 h and are self-evident at the end
of 2 wk (33, 353). Changes in fat mass induced by GHS have
been quantified using dual energy x-ray absorptiometry

measurements specifically adapted for analysis of rodent
body composition and have also been confirmed using chem-
ical carcass analysis (33, 353, 355), or by measuring the weight
of omental and retroperitoneal fat pads (355). Currently, it
seems likely that the effects that are causing a positive energy
balance are mediated via leptin-responsive neurons in spe-
cific regions of the hypothalamus (31, 39, 51, 159, 199, 353,
356, 357). However, the possibility of direct effects of ghrelin
on adipose tissue [where GHS-R mRNA expression has been
shown by PCR (1)], as well as effects on the hypothalamus-
pituitary-adrenal axis (20, 34), i.e., a ghrelin-induced Cush-
ing’s syndrome, still have to be ruled out as possible phe-
nomena contributing to ghrelin-induced adiposity.

To find the physiological mechanism behind all these ob-
servations on ghrelin and energy homoeostasis, the rapidly
evolving field of research focusing on body weight and ap-
petite regulation (233, 356, 358–360) has to be integrated with
existing knowledge regarding GHS and their actions (70, 73,
314). Energy balance is achieved when energy intake is equal
to energy expenditure (356). A positive energy balance, lead-
ing to weight gain, occurs when calories ingested, digested,
and reabsorbed exceed calories expended (356). Like leptin,
but in an opposite manner, ghrelin administered to rodents
influences both energy intake and metabolism (51).

The earliest published data on the orexigenic effects of
GHS are from Locke et al. (338), showing an increase in food
intake after intracerebroventricular administration in rats
without affecting plasma GH response. Similar effects have
been shown by several other groups (339–341, 355). These
effects were described as most likely being independent of
GH and could not be prevented by blockade of the GHRH
pathway (340).

Once ghrelin was found, we observed that it stimulated
food intake in rodents (33). This effect is dose-dependent and
occurs more powerfully after central than after peripheral
administration (33), suggesting a central mechanism of
action.

The increase in food intake after ghrelin injection in ro-
dents occurs rapidly [less than 60 min (34)], which causes this
effect to be easily missed by traditional methods of daily food
intake measurements (measurement of food weight every
24 h). The orexigenic action of ghrelin (when administered
centrally) is comparable to that of the brain-derived NPY and
is more potent than that of any other orexant (34). Although
peripherally injected GHS or ghrelin does have less impres-
sive (353), predominantly acute, and maybe solely temporary
orexigenic effects, ghrelin continuously administered into
the third ventricle causes potent and constant stimulation of
appetite in rats (33). However, further studies (i.e., involving
mice with tissue-specific disruption of the ghrelin gene) will
have to prove the existence of an endogenous ghrelin tone
that supports the putative relevance of ghrelin for physio-
logical appetite regulation and metabolic control. Some ex-
periments involving central administration of ghrelin anti-
serum or GHS-R antagonists (39) already provide some
framework for this concept.

In a series of elaborate studies, Shuto et al. (361) recently
showed that expression of antisense GHS-R mRNA under
the control of the promoter for tyrosine hydroxylase in trans-
genic rats selectively attenuates GHS-R protein expression in
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the arcuate nucleus and consecutively decreases GH secre-
tion, food intake, and body fat mass, because these antisense
GHS-R mRNA-expressing rats had lower body weight and
less adipose tissue than the control rats. Moreover, daily food
intake was reduced, and the stimulatory effect of GHS treat-
ment on feeding was abolished. These results, however,
should be interpreted with caution because of the potential
for limited specificity when an antisense approach is used to
generate transgenic animals. Anyway, GHS that have been
shown to have orexigenic activity so far include GHRP-2,
ipamorelin, GHRP-6, hexarelin, and several of its analogs (34,
340, 341, 353, 355).

Unlike other comparably potent orexigenic agents (NPY,
AGRP, melanin-concentrating hormone) that are solely ac-
tive when injected into the brain (233, 362, 363), peripherally
administered synthetic ghrelin and ghrelin receptor analogs
still exhibit orexigenic and adipogenic effects (70). This does
not necessarily mean that an acylated peptide such as ghrelin
is capable of being transported across the blood-brain barrier.
Even if early studies indicate that miniscule amounts of
ghrelin are transported across the blood-brain barrier in the
blood-to-brain direction, (198, 364, 365), ghrelin might still
have some of the hypothalamic actions because those hypo-
thalamic areas that are crucial for the regulation of energy
homeostasis, such as the ventromedial part of the arcuate
nucleus, may not be completely protected by the blood-brain
barrier (Fig. 4) (366). Some of these areas (i.e., the ventrome-
dial arcuate nucleus) may therefore be accessible by mole-
cules in the circulation (51). These hypothalamic nuclei in-
triguingly contain neurons that express the GHS-R (158) and
might therefore be essential for the mediation of effects trig-
gered by gastric or peripherally injected synthetic ghrelin (51,
70). The validity of this concept has been confirmed by Dick-
son and colleagues (161), who demonstrated that peripher-
ally injected ghrelin induces increased expression of the early
gene products c-Fos and EGR-1 in NPY-, AGRP-, and GHS-
R-coexpressing neurons in the arcuate nucleus.

The network of neurons, neuropeptides, and receptors
controlling energy balance is an extremely complex, multi-
centered system (233). Based on early surgical and chemical
deletion studies in rodents, the hypothalamus has long been
recognized as a crucial interface between afferent peripheral
signals, CNS wiring, and efferent neuroendocrine axes reg-
ulating energy balance in concert (356). Several recent re-
views give excellent overviews on the principles in this fas-
cinating and rapidly advancing field (233, 356, 358, 359).

According to current knowledge, it seems that two major
hypothalamic pathways are the predominant mediators of
ghrelin’s influence on energy balance (39, 159, 353). One
involves the NPY neurons (37, 362), and the other involves
the melanocortin receptors and their agonistic and antago-
nistic ligands, the anorexigenic POMC-derived �MSH and
the orexigenic AGRP, which is expressed in NPY neurons
(367). Ghrelin increases AGRP and NPY after acute and
chronic administration, and hypothalamic AGRP-mRNA ex-
pression levels are found to be up-regulated after chronic
activation of the GHS-R for several weeks (31, 37, 39, 353).
Complete absence of NPY in NPY-gene-disrupted mice does
not influence ghrelin action. This virtual contradiction could
also be explained by adaptive processes during the early

development of the NPY-gene-disrupted mice (368). Some
studies show a prevention of the orexigenic effects when
coadministering a NPY receptor antagonist with ghrelin
(353); however, it has to be considered that NPY antagonist
might also be acting through a more dominant pathway than
the one controlled by ghrelin. We assume that the two path-
ways described above comediate the effects of ghrelin on
energy balance, and furthermore speculate that NPY might
be more important for acute effects, whereas AGRP might be

FIG. 4. Pathways by which ghrelin may influence chronic energy
balance. Ghrelin produced by the stomach or the gut can be trans-
ported by the bloodstream to specific neuronal circuits situated in
hypothalamus or the brainstem that are regulating food intake as well
as energy expenditure. It still remains uncertain whether or not
ghrelin has to cross the blood-brain barrier (BBB) to influence these
central structures. During transport via circulating blood, serum
HDLs and presumably other proteins such as albumin bind ghrelin.
Ghrelin however may also signal the brain by activating the afferent
vagal nervous system as either an endocrine or a paracrine signal
directly at the stomach level. Ghrelin-responsive GHS-Rs are ex-
pressed at gastric vagal nerves, and vagotomy prevents some of
ghrelin’s effects on energy balance. Incoming information represented
or triggered by ghrelin is, however, believed to be constantly sensed
and analyzed in hypothalamus and the brainstem, independent from
its origin or afferent pathway used. Based on constant integration of
this and other afferent information about the status of acute and
chronic changes in energy balance, an efferent response seems to
involve several pathways to balance energy stores and adipose tissue
mass. These mainly include the sympathetic nervous system (SNS),
the hypothalamic-pituitary adrenal (HPA) axis, and the hypothalam-
ic-pituitary thyroid (HPT) axis. In addition, ghrelin is thought to be
produced in brain centers of energy balance control, and, although
present there in very small amounts, brain-derived ghrelin might
play an additional role in the regulation of energy homoeostasis (51,
123, 152, 198, 372).
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involved in both chronic and acute ghrelin action in the
hypothalamus (51).

Other agents possibly mediating ghrelin signals in the
hypothalamus are POMC, cocaine and amphetamine-regu-
lated transcript, melanin-concentrating hormone, orexin
(hypocretin) a/b, ciliary neurotrophic growth factor, GABA,
and galanin (51, 356, 358).

Apart from an increase of food intake, other mechanisms
can contribute to an increase in fat mass, such as a decrease
in energy expenditure or reduced cellular fat oxidation (356).
No significant changes of 24-h energy expenditure have been
observed in rodents after ghrelin administration. Another
effect that was detected by indirect calorimetry is an impres-
sive increase of the respiratory quotient after ghrelin admin-
istration in rodents, independent of an increase in food intake
(33). This phenomenon is interpreted as a shift from fat
utilization to carbohydrate oxidation and has been referred
to as nutrition partitioning (369).

Furthermore, there is some published evidence that
ghrelin action might be mediated in part not only by efferent
but also by afferent activity of the vagal nerve (137, 370).
These data were generated by electrophysiological studies,
in which iv administered ghrelin has been shown to decrease
the afferent activity of the gastric vagal nerve at low doses
(137). The described effects are in opposition to those of
gastrointestinal satiety peptides such as cholecystokinin
(371) and may add additional pathways to the growing num-
ber of signaling routes with which ghrelin is connected (Fig.
1, A and B) (52). More recently, it has been reported that
blockade of the gastric vagal afferent abolished ghrelin-
induced feeding, GH secretion, and activation of NPY-pro-
ducing and GHRH-producing neurons in rats. This study
suggested that the gastric vagal afferent is the major pathway
conveying ghrelin’s signals for starvation and GH secretion
to the brain (372). However, it has to be emphasized that
muscarinic receptor blockade by pirenzepine does not affect
at all the endocrine activities of ghrelin in humans (373).

In summary, administration of ghrelin and of at least some
of its receptor agonists generates a positive energy balance
and increases adiposity in rodents via multiple mechanisms,
including increased food intake and reduced fat oxidation,
possibly along with decreased locomotor activity and adi-
pocyte-specific effects. In addition, expression of GHS-R in
rat adipocytes increases with age and during adipogenesis.
Ghrelin in vitro stimulates the differentiation of preadipo-
cytes and antagonizes lipolysis. Ghrelin may therefore play
an important role in the process of adipogenesis in rats (374).

Possibly the most pressing question concerns the trans-
ferability and validity of the above-described findings in
rodents to humans. Several recent clinical studies on the
effects of ghrelin on GH secretion in humans have reported
hunger sensations as the only noticeable side effect in up to
80% of the treated individuals (15, 35). Prospective clinical
studies focusing on all aspects of energy balance using con-
temporary methods for the analysis of body composition,
energy expenditure, metabolic and endocrine changes can
help to clarify these issues. A first clinical study investigating
these open questions was conducted by Wren et al. (40) who
showed that iv administration of physiologically occurring

concentrations of ghrelin effectively triggers appetite and
increases food intake in humans.

2. Effects on sleep. Alterations in the sleep pattern are a hall-
mark of functional correlates reflecting age-related changes
in neurotransmitters and neuropeptides (375). A potential
influence of GH and IGF-I on sleep pattern has also been
suggested based on studies in GHD subjects, and it had been
hypothesized that sleep pattern in aged subjects could reflect
an age-related decrease in the activity of the GH/IGF-I axis
(375). On the other hand, some studies reported that the acute
administration of synthetic, peptidyl GHS can modify sleep
pattern in normal subjects (92, 376, 377). Moreover, it has also
been reported that prolonged treatment with oral MK-0677
(25 mg once daily) in elderly subjects increases the length of
rapid eye movement sleep phases, meanwhile decreasing
rapid eye movement latency (378). These findings from early
studies with synthetic GHS agree with ongoing studies ad-
dressing the influence of ghrelin on sleep behavior (44, 379).
In rats, there is evidence as well that ghrelin also affects
sleep-wake patterns (44). Furthermore, ghrelin itself has been
reported recently to be a sleep-promoting factor in humans
(379).

3. Effects on behavior. Besides regulating eating behavior, it has
recently been shown that ghrelin affects anxiety-like behav-
ior in mice, via mechanisms involving the hypothalamic-
pituitary-adrenal axis. Both intracerebroventricular and ip
administration of ghrelin potently induce anxiogenic activ-
ities. In addition, administration of a CRH receptor antago-
nist significantly inhibits ghrelin-induced anxiogenic effects.
Peripherally administered ghrelin significantly increases
CRH mRNA expression in the hypothalamus. These findings
suggest that ghrelin may have a role in mediating neuroen-
docrine and behavioral responses to stressors and that the
stomach could play an endocrine role, not only in the stim-
ulation of appetite, but also in the induction of anxiety (45).

C. Peripheral activities of synthetic and natural GHS

In agreement with the existence of specific ghrelin recep-
tors in peripheral tissues (see Section III. A), peripheral en-
docrine and nonendocrine activities of these substances have
been recently demonstrated. Apart from a potent GH-releas-
ing effect, ghrelin and synthetic GHS control gastric motility
and acid secretion, influence endocrine pancreatic function,
alter glucose metabolism and cardiovascular functions, reg-
ulate adipocyte modulation of adipokines, and have anti-
proliferative effects in neoplastic thyroid, mammary, and
lung cell lines (Fig. 2).

1. Gastroenteropancreatic actions. Gastrectomy in rats reduces
circulating ghrelin concentration by approximately 80%, in
agreement with the assumption that the stomach is the main
source of the endogenous GHS-R ligand (3, 124, 230). As
discussed elsewhere in this review, small quantities of
ghrelin are also expressed in other enteric tracts, as well as
in the pancreas (1, 22, 124–126, 128, 135, 150, 169, 200, 206,
243, 245, 380–386).

It is not surprising that ghrelin also acts at the gastroen-
teropancreatic level, where GHS-R 1a and 1b expression has
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been demonstrated (3, 7, 22, 30, 126, 150, 157, 200, 243).
Interestingly, there is also a close structural relationship be-
tween the precursors of motilin and ghrelin, but only a 36%
homology exists between the mature peptides (137). Also, the
gastrointestinal motilin receptor 1a and the GHS-R 1a show
a high degree of structural homology (112, 118). The simi-
larity between ghrelin and motilin actions has recently been
emphasized (112, 127, 134–140, 382, 387) and has been dis-
cussed elsewhere in this review. Also, circulating levels of
ghrelin and glucagon-like peptide (GLP)-1 seem to be in-
versely related during glucose ingestion (388, 389). The clin-
ical implication of this has not been determined.

Ghrelin stimulates gastric acid secretion and motility in
rats (32, 136, 390), and circulating ghrelin levels are correlated
with gastric emptying time in humans (242). However,
Sibilia et al. (391) reported a centrally mediated inhibitory
role of ghrelin and synthetic GHS on acid secretion in rats.
The stimulatory actions of ghrelin are mediated by the cho-
linergic system because they are abolished by muscarinic
blockade (32). Interestingly, the acetylcholine-mediated
stimulatory effect of ghrelin on gastric acid secretion takes
place, at least partially, at the central level (36). More recently,
it has been clarified that stomach-derived ghrelin’s signals
for starvation and GH secretion are relayed to the brain by
means of the vagal nerve (372). However, in humans, cho-
linergic blockade by pirenzepine has been shown unable to
modify the endocrine activities of ghrelin (373). Interestingly,
the potent prokinetic activity of ghrelin/motilin-related pep-
tide has been recently confirmed and extended to allow for
reversal of a gastric postoperative ileus in rats (136, 392).

Ghrelin and GHS-R 1a mRNA are present in normal and
neoplastic endocrine pancreas (22, 30, 126, 163, 206, 393, 394).

Regarding the exocrine pancreas, it has been shown that
ghrelin is a potent inhibitor of pancreatic cholecystokinin-
induced exocrine secretion in anesthetized rats in vivo and in
pancreatic lobes in vitro. These actions of ghrelin are indirect
and may be exerted at the level of intrapancreatic neurons
(42).

Regarding the endocrine pancreatic function, in addition
to inconstant data on the expression of the classical GHS 1a
(22, 30, 128, 169, 206), ghrelin has been demonstrated to be
expressed by pancreatic endocrine �-cells in rat and human
tissue by some authors (206) and by pancreatic �-cells by one
group (169). It was reported that ghrelin is expressed in a
quite prominent endocrine cell population in human fetal
pancreas, and ghrelin expression in the pancreas precedes by
far that in the stomach. Pancreatic ghrelin cells remain at
lower numbers in adult islets. According to Wierup et al.
(395), ghrelin is not coexpressed with any known islet hor-
mone, and the ghrelin cells may therefore constitute a new
islet cell type. Studies in animals reported conflicting results
regarding the influence of ghrelin on insulin secretion (41,
206, 381). In fact, ghrelin was able to stimulate insulin se-
cretion from isolated rat pancreatic islets (206) and in vivo
(381, 393). On the other hand, insulin secretion from isolated
rat pancreas, perfused in situ after stimulation with glucose,
arginine, and carbachol, was found to be blunted by expo-
sure to ghrelin that also reduced the SS response to arginine
(41). These findings suggest that ghrelin exerts a tonic in-
hibitory regulation on insulin secretion from pancreatic

�-cells, contributing at least in rats to a restrained release
during food deprivation. In agreement with this hypothesis,
a clear negative association between ghrelin and insulin se-
cretion has been found in humans as well as in animals by
the majority of authors (44, 209, 211, 243, 245, 396), although
not by all (397). Again in agreement with the assumption that
ghrelin negatively modulates pancreatic �-cell secretion, at
least transiently, it has been demonstrated recently that in
humans, ghrelin induces a significant increase in human
plasma glucose levels that is followed, surprisingly, by a
reduction in insulin secretion (35, 316, 398). Coupled with the
observation that acute as well as chronic treatment with GHS,
particularly nonpeptidyl derivatives, induced hyperglyce-
mia and insulin resistance in a considerable number of el-
derly subjects and obese patients (90, 97, 399), these obser-
vations suggest that ghrelin is a gastroenteropancreatic
hormone, exerting a significant role in the regulation of in-
sulin secretion and glucose metabolism. Ghrelin might in-
tegrate the hormonal and metabolic response to fasting that,
at least in humans, is connoted by a clear-cut increase in GH
secretion coupled with inhibition of insulin secretion and
activation of mechanisms devoted to maintaining glucose
levels (231, 399, 400). The negative association between
ghrelin and GLP secretion adds further credibility to this
hypothesis (395), whereas future studies will need to show
whether GLP influences ghrelin secretion and vice versa.
Regarding glucose levels, it has already been shown that
ghrelin likely blocks the inhibitory effects of insulin on glu-
coneogenesis (401). Also, ghrelin secretion may be sup-
pressed, at least in part, by an increased plasma glucose level
as well as by insulin per se, as shown by hyperinsulinemic
euglycemic clamp studies in healthy subjects (211, 214, 218).
However, this observation also suggested that ghrelin could
have direct stimulatory effects on glycogenolysis, and this
action is likely mediated by a non-GHS-R 1a process, because
it is not exerted by synthetic GHS (35). All data show that
ghrelin secretion seems to be negatively associated with body
mass while its levels are increased in anorexia nervosa and
cachexia. Also, early morning, overnight fasting ghrelin con-
centrations seem to be decreased in obese subjects. This
indicates the potential major impact of ghrelin on insulin
secretion and glucose metabolism suggested by studies sum-
marized above (211, 214, 218, 231, 399–401). Ghrelin may
play an important role in the process of adipogenesis, at least
in rats. In fact, ghrelin administration significantly increases
the levels of peroxisome proliferator-activated receptor-�2
mRNA in primary cultured rat differentiated adipocytes. In
addition, isoproterenol-stimulated lipolysis is significantly
reduced by simultaneous ghrelin treatment in a dose-
dependent manner in vitro. Moreover, ghrelin stimu-
lates the differentiation of preadipocytes and antagonizes
lipolysis (374).

In the context of the relationship between ghrelin and
obesity, it is noteworthy that the only exception to the neg-
ative association between ghrelin and body mass is repre-
sented by obese patients with Prader-Willi syndrome (PWS)
that show peculiarly elevated circulating ghrelin levels (402,
403). In a study by Haqq et al. (404) in children with PWS,
fasting ghrelin concentrations were not significantly differ-

440 Endocrine Reviews, June 2004, 25(3):426–457 van der Lely et al. • Aspects of Ghrelin



ent compared with normal weight controls but were higher
than in obese children.

2. Cardiovascular and hemodynamic effects. The presence of
GHS-R 1a mRNA has been demonstrated in heart and aorta
(22, 38), and specific binding sites for ghrelin have been
recently identified in rat heart and human arteries, where the
density of ghrelin receptors is up-regulated with atheroscle-
rosis (405). Considerable specific binding of radiolabeled
peptidyl GHS (such as [125I]Tyr-Ala-hexarelin and [125I]Tyr-
benzoylphenylalanine-hexarelin) is easily detectable in rat
myocardium (107, 167) and in different human cardiovas-
cular tissues (ventricles, atria, aorta, coronaries, carotid, en-
docardium, and vena cava), in quantities often higher than
those found in the pituitary gland (24, 26). This binding is
inhibited by unlabeled Tyr-Ala-hexarelin, hexarelin, and
other peptidyl GHS, but not by the nonpeptidyl GHS MK-
0677 or even by ghrelin, as well as by classical cardioactive
substances (26). Therefore, these binding sites are unlikely to
be classical GHS-Rs because they do not bind ghrelin (see
Section III. A).

In agreement with the presence of GHS-Rs (both ghrelin
and nonghrelin receptors) in the cardiovascular system,
there is already evidence that ghrelin and (or) GHS mediate
GH-independent cardiovascular activities, both in animals
and in humans.

Although administration of high pharmacological doses of
peptidyl GHS is reported to induce clear but transient cor-
onary vasoconstriction in the perfused rat heart (49, 167), in
young rats with selective GHD induced by passive immu-
nization against GHRH, hexarelin pretreatment is able to
protect against myocardial ischemic damage induced by
low-flow ischemia and reperfusion (406, 407). Such a pro-
tective activity was associated with a recovery of prostacyclin
release and a normalization of the vasopressor activity of
angiotensin II (406, 407). GHD induces a clear exacerbation
of ischemic tissue damage during low-flow ischemia and
reperfusion in rats. This worsening could be, at least par-
tially, due to the reduced release of prostacyclin during the
preischemic phase (particularly during reperfusion) and to
the enhanced responsivity of coronary smooth muscles to
angiotensin II, which increases the coronary artery resistance
during reperfusion (406, 407).

Similar results were observed in aged rats in which hexare-
lin pretreatment achieved a strong protection against myo-
cardial stunning (408). Complete recovery of the cardiac
function was present on reperfusion, and the simultaneous
reduction of creatine-kinase levels testifies to the integrity of
myocardial cell membranes and the preservation from the
contractile impairment that follows oxygen readmission
(408).

Evidence that GHS activities are GH-independent and me-
diated by direct activation of specific myocardial receptors
(24, 167, 408) came from a study showing cardioprotective
effects in hypophysectomized rats (409). Moreover, in an
isolated blood-perfused rabbit heart model of stunning, in
which brief ischemia- and reperfusion-induced functional
impairment without detectable necrosis or apoptosis, 14-d
pretreatment with GHRP-2, but not with recombinant hu-
man GH, has been reported to selectively protect against the

diastolic component of the postischemia-reperfusion myo-
cardial dysfunction (410). Such an improvement in diastolic
stiffness was independent of coronary blood flow and of
serum GH and IGF-I levels.

Hexarelin increases stroke volume and cardiac output and
decreases total peripheral resistance in a rat model 4 wk after
experimental myocardial infarction induced by ligation of
the left coronary artery (411). A positive effect of GHS on
cardiac contractility was also seen in an isoproterenol-
induced rapid-pacing porcine model of heart failure in which
3-wk treatment with CP-424,391, an orally active GHS, im-
proved left ventricular fractional shortening (412). Although
the mechanisms underlying the inotropic activity of syn-
thetic GHS are still unclear, there is evidence that they in-
crease papillary muscle contractility via actions on endothe-
lial cells and/or nerve endings (413).

It has to be noticed that ghrelin does not share all the
cardiovascular actions of synthetic GHS. Ghrelin negligibly
protects the heart from ischemia in rats (414), suggesting that
the effects of synthetic GHS occur via binding and activation
of binding sites specific for peptidyl GHS (25, 26). The in-
activity of ghrelin agrees with the existence of a receptor
specific for peptidyl GHS only (25, 26, 49, 167, 415). This
receptor has a molecular mass that is higher (84 kDa) than
that of GHS-R 1a and shows no homology with this receptor;
its predicted amino acid sequence is similar to CD36, a mul-
tifunctional receptor also known as glycoprotein IV, which
would therefore mediate the coronaric actions of peptidyl
GHS (49).

Although probably inactive at the coronary level, ghrelin
possesses other cardiovascular activities. Chronic adminis-
tration of ghrelin is able to improve cardiac contractility in
GHD rats and even in rats with chronic heart failure (416) in
which it also attenuates the development of left ventricular
remodeling and cardiac cachexia. Moreover, both in chronic
heart failure and in hypophysectomized rats, prolonged ad-
ministration of ghrelin is associated with a reduction of sys-
temic vascular resistance, probably reflecting a decrease of
the afterload, more than a direct myocardial effect (416).

Interestingly, hexarelin, acylated ghrelin, and even non-
acylated ghrelin are able to prevent cell death of cultured
H9c2 cardiomyocytes and endothelial cells, induced by
doxorubicin, serum withdrawal, or activation by FAS-ligand
(170, 171). These molecules probably stimulate intracellular
signaling pathways involved in the process of survival in
cultured cardiomyocytes, including tyrosine phosphoryla-
tion of intracellular proteins and activation of extracellular-
signal-regulated kinase-1 and -2 and protein kinase B/AKT
(170). Because nonacylated ghrelin is unable to activate the
GHS-R 1a (17), these data further indicate existence of an-
other cardiac GHS-R subtype. These data also indicate that
nonacylated ghrelin has at least some biological activities (8).

Studies in healthy volunteers indicated that synthetic GHS
administration induces a prompt increase in left ventricular
ejection fraction (417). The same effects have been demon-
strated in hypopituitary adult patients with severe GHD
(417, 418). As in normal subjects and in GHD patients, the
synthetic GHS-induced increase in left ventricular ejection
fraction occurred without variations in left ventricular end
diastolic volume, mean blood pressure, or heart rate, even in
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patients with postischemic dilated cardiomyopathy (417–
421). More recently, in patients with coronary artery disease
undergoing bypass surgery, acute administration of hexare-
lin increased left ventricular ejection fraction, cardiac index,
and cardiac output (422). Like in animals, the mechanisms
responsible for these inotropic activities of synthetic GHS are
unclear.

In humans, ghrelin and GHS possess cardiovascular ac-
tivities. In fact, its administration in normal subjects and even
in patients with chronic heart failure significantly decreases
systemic vascular resistance and increases cardiac index and
stroke volume index (38, 423). This is accompanied by a
concomitant reduction in mean arterial pressure, but not by
any change in heart rate, mean pulmonary arterial pressure,
or pulmonary capillary wedge pressure. Despite its hypo-
tensive effect, which is independent of the GH-IGF-I and
nitric oxide system (50), ghrelin slightly increased epineph-
rine but not norepinephrine levels (38, 164). The pathophys-
iological significance of these phenomena is presently
unknown.

3. Modulation of proliferation of neoplastic cells. Specific binding
sites for peptidyl and nonpeptidyl GHS are present in normal
and neoplastic human thyroid tissue. Binding sites for GHS
have been demonstrated in all follicular and most parafol-
licular thyroid carcinomas, as well as in different human
thyroid tumor cell lines (follicular, papillary, and anaplastic
carcinoma cell lines). Moreover, medullary, but not follicu-
lar, thyroid carcinomas and carcinoma cell lines remarkably
express ghrelin. Ghrelin and peptidyl and nonpeptidyl GHS
inhibit [3H]thymidine incorporation and cell proliferation in
all thyroid tumor cell lines, already within 24 h (129, 424, 425).
Interestingly, the same actions are shared by nonacylated
ghrelin that are also particularly accumulated in human
medullary thyroid carcinomas (129).

GHS-Rs are found in tumoral tissues from organs that do
not express these receptors in physiological conditions, such
as mammary gland tissue (27). The presence of specific
GHS-Rs was shown in breast cancer, but not in fibroadeno-
mas or normal mammary parenchyma. In breast tumors, the
highest binding activity is present in well-differentiated in-
vasive breast carcinomas and is progressively reduced in
moderately to poorly differentiated tumors. GHS-Rs are also
present in both estrogen-dependent (MCF7, T47D) and
estrogen-independent (MDA-MB231) breast cancer cell lines,
in which ghrelin and synthetic GHS cause inhibition of cell
proliferation. Like in the cardiovascular system and in thy-
roid carcinomas, the same effect of acylated ghrelin is shared
by the nonacylated molecules, again indicating that nonacy-
lated ghrelin is a biologically active peptide possessing at
least antiproliferative actions (27). Because nonacylated
ghrelin is generally unable to bind the GHS-R 1a, these data
indicate the possibility that the antiproliferative effects of
acylated and nonacylated ghrelin on breast and thyroid can-
cer cells are mediated via a GHS-R subtype that is different
from the GHS-R 1a (21).

Other data indicate that neuroendocrine carcinoid tumors
(26, 121, 128, 163, 166, 169, 426) and even adenocarcinomas
of the lung express specific GHS binding sites (426). These
sites are also present in the human lung cancer cell line

CALU-1, of which the proliferation is inhibited by synthetic
peptidyl GHS and analogs such as the EP-80317, but not by
ghrelin (426).

The GHS-R 1a and 1b, as well as ghrelin, are also expressed
in all prostate cancer cell lines. The PC-3 prostate cancer cell
line, however, showed increased cell proliferation in vitro
after exposure to ghrelin, suggesting that autocrine-para-
crine pathways involving ghrelin might be capable of stim-
ulating cell proliferation (46). Indeed, ghrelin-induced cell
proliferation was also found in a hepatoma cell line, the H9c2
cardiomyocyte cell line, and rat adrenal cortex (401, 427, 428).
Despite the potential proliferative effect on some neoplastic
cell types, ghrelin is currently investigated as an anticachectic
agent in tumor-bearing animal models, where it seems to
exert anabolic actions (429, 430).

VI. Ghrelin as an Important Member of the Survival
Kit of Nature

Ghrelin biology is very well preserved, possibly indicating
an important role for this peptide hormone, which was dis-
covered no more than 4 yr ago. Apart from humans, rats, and
mice, ghrelin expression and/or its biological actions have
been demonstrated in many species (43, 54, 135, 244, 324,
431–438).

If ghrelin plays an important biological role in each of these
species, what is this role? Although new aspects of this fas-
cinating hormone are discovered nearly on a daily basis, it
seems to be reasonable that ghrelin represents a crucial en-
docrine link connecting physiological processes regulating
nutrition, body composition, and growth (51). Based on cur-
rent knowledge, we speculate that ghrelin ensures that suf-
ficient amounts of energy are available for GH to stimulate
growth and repair (439). Assuming the induction of a pos-
itive energy balance to be one of ghrelin’s most powerful
physiological functions, from a teleological point of view, it
appears that ghrelin signals the brain when energy must be
consumed or stored (51). The observed physiological actions
of ghrelin appear to be in accordance with this hypothesis:
ghrelin increases food intake (33), decreases fat oxidation
(33), and suppresses body core temperature (440).

This function, which may have been developed by evo-
lutionary selection processes for survival in times of reduced
caloric supply, now still promotes a positive energy balance,
although obesity, and not starvation-induced cachexia, is
today’s predominant nutrition-related disorder in industri-
alized countries (441). Recent linkage studies have shown
that rare polymorphisms of the preproghrelin gene might
protect against obesity-related symptoms (442), possibly in-
dicating that a signaling mechanism once developed to pro-
long life now may have turned into a health hazard in the
presence of changed environmental conditions such as a
palatable high-caloric food supply and an increasingly
sedentary lifestyle (443).

Several recent studies show that circulating ghrelin pep-
tide levels are decreased in obese individuals (202, 219, 444,
445) as well as postprandially (242), whereas ghrelin levels
are increased under cachectic and anorectic conditions (245,
416, 446, 447), as well as during food deprivation (33, 243,
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245) or preprandially (209). This negative association be-
tween ghrelin concentrations and acute feeding on one hand
and chronic positive energy balance on the other is inter-
preted by many as an adaptive physiological response (51),
which, at least in the case of obesity, fails to reestablish an
appropriate energy balance (242). That further reduction of
the already low plasma ghrelin concentrations in obese in-
dividuals could possibly still trigger the reduction of body fat
mass, or at least prevent recidivism to obesity after diet-
induced weight loss, has recently been shown by Cummings
et al. (202). After gastric bypass surgery, obese patients ex-
hibited a more impressive weight loss than can generally be
achieved by voluntary caloric restriction. Cummings et al.
(202) found that gastric bypass surgery is associated with low
circulating ghrelin concentrations close to the detection limit,
whereas weight loss induced by voluntary caloric restriction
is coupled to elevated circulating ghrelin concentrations,
most likely triggering increased hunger and decreased fat
oxidation. Although the hypothesis that these adaptive
ghrelin responses to caloric restriction may contribute to the
obesity epidemic via increased recidivism is intriguing, only
the availability of a potent ghrelin antagonist will make it
possible to test whether a pharmacological simulation of
gastric bypass surgery could represent an effective treatment
option for obesity.

A single exception to the general observation of adaptive
changes in ghrelin secretion in response to acute or chronic
changes in energy stores is adding further evidence to so-
lidify the theory that ghrelin is a clinically relevant stimulator
of hunger and adiposity. Patients with PWS not only suffer
from uncontrollable hunger, increased fat mass, and physical
hypoactivity, but also have severalfold increased plasma
ghrelin levels, when compared with body mass index of
matched healthy controls (402, 448, 449). All other known
obese states are associated with low plasma ghrelin levels,
including monogenic causes of obesity (360). Although the
genetic etiology of PWS does not offer a pathogenetic role for
ghrelin, indirect mechanisms such as chronic hypoinsuline-
mia or GHD could be responsible for hyperghrelinemia and
its respective consequences (449). Again, only an effective
ghrelin antagonist will allow for testing this hypothesis and
will possibly represent a much-needed therapeutic option for
these patients.

The mechanisms behind adaptive adjustment of ghrelin
secretion to stored fat mass clearly require adipocyte-derived
signals to communicate the level of stored fat to ghrelin-
secreting A cells in the gastrointestinal tract. Recent studies
in leptin receptor mutant Zucker rats, leptin receptor-defi-
cient db/db mice, and leptin-deficient ob/ob mice suggest
that leptin might not be that signal, because ghrelin levels in
these obese rats are low compared with lean matched con-
trols, indicating that the activation of the leptin receptor at
the levels of the ghrelin-secreting cell is not the crucial signal
and that other adipokines could be responsible for decreased
ghrelin levels in obesity (246). Although it has been estab-
lished quite well that circulating ghrelin concentrations un-
der several conditions presenting with low body fat mass, as
for example in cancer cachexia (447), anorexia nervosa (446),
or cardiac cachexia (416), are significantly elevated, the ex-
istence of a putative ghrelin resistance syndrome under these

conditions has not yet been established. It seems possible,
however, that a decreased ghrelin responsiveness to constant
exposure of ghrelin may be realized similar to leptin resis-
tance syndrome postulated in hyperleptinemic obese pa-
tients (450). If this scenario can be proven, it might be difficult
to establish ghrelin or one of its receptor agonists as a treat-
ment for anorexia or cachexia, although high doses might
still show a favorable effect. A comparable situation occurs
in type 2 diabetes, in which insulin treatment can still be
useful although insulin levels are already increased in re-
sponse to insulin resistance (451).

In summary, ghrelin as part of the survival kit of nature
might be responsible for synchronizing growth regulation
with energy balance to make certain that energy is available
for GH actions during growth and repair. Under today’s
highly palatable and abundant diet environmental condi-
tions, however, the orexigenic and adipogenic drive of
ghrelin may be turning this hormone into a health hazard
(452).

VII. Pharmacological and Clinical Perspectives

Because GH is a large protein that must be administered
by injection or inhalation, ghrelin agonists (and/or GHS)
have offered promise for a more convenient and socially
acceptable oral delivery of an agent that stimulates endog-
enous GH. Indeed, it was that potential that drove Merck &
Co. to lead a search for an orally available GHS (453). Others
realized enormous potential for the much more potent
GHRPs, such as GHRP-2 (454) and hexarelin (20), despite
their relatively poor bioavailability (455). General clinical
utility for these ghrelin mimics as GH therapeutics was re-
viewed by many (20, 453, 456–458). These discussions fo-
cused on uses in pediatrics (459) and geriatrics (72, 318, 460,
461) and on uses to combat the catabolism accompanying
critical illness (462). Clinical investigators have also exploited
the ability of ghrelin agonists to release GH by mechanisms
distinct from GHRH as a diagnostic tool (463–466). Interest-
ingly, the GHRPs (49, 420, 422, 467) and perhaps ghrelin (50)
may be used to treat heart failure and hypertension. Such
indications have not been made for the nonpeptide agonists
of ghrelin, which may be a result of their lower affinity for
the GHS-R 1a or because the peptides bind to a yet uniden-
tified receptor. Ghrelin receptors were recently identified in
human cancer (27, 424), ghrelin agonists may have antipro-
liferative actions (426), and in some cancers ghrelin antag-
onists may be indicated.

Until ghrelin was exposed as a hormone that stimulates
appetite in rodents and humans, there was no demanding
but unmet clinical need for a ghrelin antagonist. Although
such a molecule may be expected to reduce GH levels and
thus could be indicated for the treatment of acromegaly,
other effective agents are available. The new possibility of
using a ghrelin antagonist for the treatment of obesity ini-
tiated a scramble by many groups to hunt for such a valuable
agent. All groups that had efforts to discover and study GHS
have the tools and likely lead molecules to begin this pursuit.
Thus, it will not be long before antagonists are disclosed and
tested for the treatment of obesity. It is conceivable that initial
trials may include obese PWS patients (402).
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