ผลของการเสริมเปลือกมังคุดและกระเทียมผงอัดเม็ดต่อการเปลี่ยนแปลง นิเวศวิทยารูเมน และการผลิตก๊าซเมธเทนในโคเนื้อ

Effect of mangosteen peel-garlic powder pellet supplementation on rumen ecology and methane gas production in beef cattle

นิรามัย มานะศรี¹, เมธา วรรณพัฒน์¹* และ ไชยณรงค์ นาวานุเคราะห์¹ Niramai Manasri¹, Metha Wanapat¹* and Chainarong Navanukraw²

บทคัดย่อ: การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาผลของการเสริมเปลือกมังคุดและกระเทียมผงอัดเม็ด ต่อปริมาณ การกินได้ การย่อยได้ กระบวนการหมักในกระเพาะรูเมน และการผลิตก๊าซเมธเทนในโคเนื้อ โดยใช้โคเนื้อเพศผู้ลูกผสมเจาะ กระเพาะ (rumen fistulated) จำนวน 4 ตัว ใช้ฟางข้าวเป็นแหล่งอาหารหยาบหลัก เสริมด้วยอาหารข้น 0.5 % ของน้ำหนักตัว โดยสุ่มโคเนื้อแต่ละตัวให้ได้รับอาหารที่รัทเมนต์ในแผนการทดลองแบบ 4x4 ลาตินสแควร์ โดยมีทั้งหมด 4 ทรีทเมนต์ ได้แก่ 1) กลุ่มควบคุมที่ได้รับอาหารข้นตามปกติ(ไม่มีการเสริม) 2) การเสริมด้วยเปลือกมังคุดอัดเม็ด 3) เสริมเปลือกมังคุด และกระเทียมผงอัดเม็ด และ 4) เสริมด้วยเปลือกมังคุดกับกระเทียมผงและยูเรีย 2 % ที่ระดับการเสริม 200 กรัม/ตัว/วัน ในทุกๆ กลุ่มการทดลอง ผลการทดลองแสดงให้เห็นว่า การเสริมเปลือกมังคุด กับกระเทียม และ เปลือกมังคุดกับกระเทียม ที่ผสมยูเรียอัดเม็ด ไม่ทำให้ปริมาณการกินได้ การย่อยได้ของวัตถุแห้ง อินทรียวัตถุ และโปรตีนแตกต่างกันทางสถิติ (P>0.05) ผลจากการเสริมทำให้เพิ่มสัดส่วนของ propionate (C3) ลด acetate (C2) และลดการผลิตก๊าซเมธเทนได้ (P<0.05) ในขณะที่ butyrate (C4) ไม่มีความแตกต่างเมื่อเทียบกับกลุ่มควบคุม

คำสำคัญ: เปลือกมังคุด, กระเทียม, กระเพาะรูเมน, ก๊าซเมธเทน, โคเนื้อ

ABSTRACT: The objective of this study was to investigate the effect of mangosteen peel and garlic powder supplementation on the intake, digestibility, ruminal fermentation and methane production in beef cattle steers fed on rice straw base of diet. Four, 2 year old rumen fistulated male crossbred beef cattle were randomly assigned in a 4x4 Latin square design to receive four dietary treatment; mangosteen peel pellet (Mago-pel), mangosteen peel with garlic powder (Maga-ulic) 200g/h/d and non-supplemented (control). All animals were fed with rice straw *ad-libitum* while of addition concentrate was fed 0.5 % body weight (BW). It was found that supplementation of mangosteen peel and garlic with or without urea had no effect on daily feed intake (FI), digestibility of dry matter (DM), organic matter (OM) and crude protein (CP) and was not significantly affected. Supplementation resulted in significantly lower overall NDF and ADF digestibility when compared with the control. Ruminal pH, concentration of ruminal NH₃-N and blood urea nitrogen (BUN) concentrations were not significantly different among treatments. The proportion of C2 and methane gas production were decreased, while C3 proportion was increased by the supplementation.

Keywords: Mangosteen peel, Garlic, Rumen, Methane, Beef cattle.

¹ ศูนย์วิจัยและพัฒนาทรัพยากรอาหารสัตว์เขตร้อน (ศวทร.) ภาควิชาสัตวศาสตร์ คณะเกษตร์ศาสตร์ หาวิทยาลัยขอนแก่น ขอนแก่น 40002

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002

^{*} Corresponding author: metha@kku.ac.th

Introduction

Manipulation of the rumen microbial ecosystem to enhance fibrous feed digestibility, reduce methane emission and reduce nitrogen excretion by ruminants such as to improve their performance are some of the most important goals for animal nutritionists (Patra et al., 2006). Plant secondary compounds such as condensed tannins and saponins have been shown to inhibit protozoa and methanogens presumably by lowering methanogenic activity of protozoal-associated methanogens (Guo et al., 2008). Mangosteen peel (Garcinia mangostana), contains of tannins and crude saponis, which exerts a specific effect against rumen protozoa and reduced methane gas emissions, while the rest of the rumen biomass remains unaltered (Ngamsaeng et al., 2006). Currently, the use of plant herbs has resulted in improving rumen ecology (Kamra, 2005; Wanapat et al., 2008). Garlic (Allium sativum) is an herb or spice plant that has been used by humans as a source of antimicrobial agents for the gastrointestinal. It has a complex mixture of many secondary plant products (Lawson, 1996) that could manipulate rumen fermentation such as decreased in the proportion of acetate and increased in proportion of propionate and butyrate, inhibition of methanogenesis and decreased in the CH4:VFA ratio (Busquet et al., 2005). However manipulation of ruminal fermentation of beef cattle by the use of mangosteen peel and/or garlic powder with or without urea by pelleting is quite limited. Therefore, the objective of this study was to investigate the effect of mangosteen peel and garlic powder supplementation on the intake, digestibility, ruminal fermentation and methane production in steer beef cattle.

Materials and Methods

Animal, diets and experimental design: Four- fistulated male crossbred beef cattle (228±45 kg of BW) were randomly assigned according to a 4x4 Latin square design to investigate the effect of mangosteen peel and garlic powder supplementation on FI, digestibility of nutrients, rumen fermentation and methane production. The dietary treatments were as fallows: T1 = control (non-supplementation), T2 = supplementation of mangosteen peel pellet (Mago-pel) 200g/day, T3 = supplementation of mangosteen peel with garlic powder pellet (Maga-lic) 200g/day and T4 = supplementation of mangosteen peel pellet with urea and garlic powder (Maga-ulic) 200g/day. The ration compositions were shown in Table 1. All animals were kept in individual pens and received free access to water and mineral blocks. The animals received concentrate diet at 0.5 % of BW and while rice straw was offered ad libitum as basal roughages source. Fl of concentrate and roughage were measured separately and refusals were recorded. The experiment lasted for four periods, each period lasted for 21 days. During the first 14 days FI was measured, while the last 7 days feed, feces and feed refusals were sampled for chemical analyses. Feed and fecal were collected by total collection when animals were on metabolism crates during the last 7 days of each period. Dietary treatment, concentrate, rice straw and feces were sampled and analyzed chemical compositions of DM, Ash, CP and NH₂-N by the method of AOAC (1990) and NDF, ADF by Van Soest et al. (1991).

Tabla 1	Ingredients and	cupplomontal	l nallat diata	ucad in tha	avpariment
Table 1	THOREOTERNS AND	SUDDIELLELIA	Dellel Oleis	useu III IIIe	expennen

Items	Mago-pel	Maga-lic		Maga-ulic
Mangosteen peel	Ç	98.5	93.5	91.5
Garlic powder		-	5.0	5.0
Molasses		1.0	1.0	1.0
Urea		-	-	2.0
Cassava starch		0.5	0.5	0.5
Total	10	0.00	100.0	100.0
CP		21.3	19.6	25.2
TDN*	ī	70.0	64.4	63.7

^{*}By calculation, CP = Crude protein.

At the end of each period rumen fluid and jugular vein blood samples were collected 0, 2, 4 and 6 h after feeding. A blood sample (about 10 ml) was analyzed of BUN according to the method of Crocker (1976). Rumen fluid was collected via rumen fistular and immediately measured for pH and temperature (HANNA, Instruments HI 8424 microcomputer, Singapore). Rumen fluid samples were used for NH₃-N and VFAs analysis. NH₃-N analysis using the Kjeltech Auto 1030 Analyzer and Volatile fatty acids (VFAs) were analyzed using High pressure liquid chromatography (HPLC).

Statistical analyses were performed using the general linear procedure in proc GLM of SAS (1996). The results are presented as mean values and standard error of the means. Differences between treatment means were determined by Duncan's New Multiple Range Test (DMRT) (Steel and Torrie, 1980).

Result and Discussions

FI and apparent digestibility of nutrients: FI and digestibility of nutrients are presented in Table 2. Total FI, intake of rice straw and concentrate, digestibility of DM, OM and CP were not affected by feed supplementation (P >0.05); however, fiber digestibility (NDF, ADF) were changed as influenced by supplementation (P<0.05). Supplementation of Mago-pel, Maga-lic and Maga-ulic as resulted in lower NDF and ADF digestibility when compared with control group (P<0.05). This result was consistent with Ngamseng et al. (2006) and Poungchompu et al. (2009) who reported that feeding dietary tannins and saponins decreased apparent digestibilities. While in others reports (Kongmun et al., 2011; Wanapat et al., 2008) have found that supplementation of garlic powder had no effect on NDF and ADF digestibilities but tended to increase CP and NDF digestibilities.

Table 2	Effect of mangost	een peel-garli	powder	pellet	supplementation	on feed	intake and	nutrient
	digestibilities.							

Items	T1	T2	T3	T4	SEM	P-value
Kg/d	3.86	3.60	3.62	3.67	0.14	0.550
%BW/d	1.90	1.78	1.83	1.85	0.07	0.640
Rice straw DMI						
Kg/d	2.79	2.53	2.56	2.56	0.14	0.540
% BW/d	1.38	1.22	1.30	1.26	0.08	0.560
Concentrate DMI						
Kg/d	1.07	1.07	1.07	1.11	0.02	0.460
% BW/d	0.54	0.54	0.54	0.56	0.01	0.460
Apparent digestibility,%						
DM	56.9	55.5	51.6	52.8	5.10	0.510
OM	60.4	58.9	53.2	57.3	4.59	0.450
CP	44.6	34.3	33.7	31.2	7.64	0.640
NDF	52.5ª	43.5 ^b	41.2 ^b	42.6 ^b	3.94	0.045
ADF	50.4ª	42.3 ^b	40.7 ^b	41.8 ^b	3.67	0.043

^{a,b} Means in the same row with different superscripts differ (P<0.05). DMI; Dry matter intake, T1 = control (non-supplementation), T2 = supplementation of mangosteen peel pellet (Mago-pel) 200g/day, T3 = supplementation of mangosteen peel with garlic powder pellet (Mago-lic) 200g/day and T4 = supplementation of mangosteen peel pellet with urea and garlic powder (Mago-ulic) 200g/day.

Table 3 Effect of Mangosteen peel-garlic powder pellet supplementation on blood urea nitrogen and rumen fermentation.

Items	T1	T2	T3	T4	SEM	p-value
Temperature, °C	38.6	38.6	38.4	38.4	0.15	0.747
NH ₃ -N, mg/dL	6.0	7.1	6.2	8.6	1.06	0.027
BUN, mg/dL	8.3	7.5	8.0	8.8	1.25	0.911
VFA, mmol/L	107.6	98.9	105.1	103.5	3.29	0.225
Acetate (C2), %	65.4ª	59.8 ^b	60.6 ^b	58.5 ^b	1.71	0.458
Propionate(C3), %	18.6 ^b	24.3ª	23.5°	25.6ª	0.86	0.038
Butyrate(C4), %	16.0	15.9	15.8	15.9	1.06	0.472
C2:C3	3.5	2.5	2.6	2.3	0.24	0.797
CH4, mmol/L	30.1ª	26.8 ^b	25.4 ^b	27.8 ^b	0.83	0.035

 $^{^{\}rm a,\,b}$ Means in the same row with different superscripts differ (P<0.05)

$$CH_4 = 0.5C_2 - 0.25C_3 + 0.5C_4$$
 (Ørskov, 1992)

Rumen fermentation characteristics and methane gas production

Rumen pH (6.7 to 6.9), temperature (38.4 to 38.6 $^{\circ}$ C) and concentration of rumimal NH $_{_3}$ - N (Table 3) were not significantly different among treatments, the values were in normal ranges and optimal for microbes to digest fiber and protein (Firkin, 1996). The total VFA production and BUN were not affected by feed supplementation (P > 0.05). However supplementation of Maga-ulic was slightly increased when compared with others groups. Supplementation increased C3 and decreased C2 concentration when compared with the control. This result of methane gas production was reduced significantly differences (P<0.05) as influenced by dietary treatments. Garlic powder had no effect on ruminal NH - N (Carilejos et al., 2006; Wanapat et al., 2008). The proportion of C2 was decreased, while C3 proportion was increased by supplementation. These results were similar with Poungchompu et al., 2009; Pilajun and Wanapat, 2011. This study did not find a difference on C4 proportion. The results were consistent with Kongmun et al. (2011).

Conclusions

Based on this study, it could be concluded that supplementation of Magosteen peel and garlic pellets could improve ruminal fermentation especially increased propionic proportion and reduced methane gas production.

Acknowledgements

The authors would like to express our most sincere thanks to The Thailand Research Fund, Master Degree Research Grants (TRF-MAG Window II), Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University for providing financial support, experimental animal and laboratory facilities.

References

- AOAC, 1990. Official Methods of Analyses, 15th ed. Assoc. Offic. Anal. Chem, Arlington, VA.
- Busquet, M., S. Calsamiglia, A. Ferret, M.D. Carro, and C. Kamel. 2005. Effect of garlic oil and four of its compounds or rumen microbial fermentation. J. Dairy Sci. 88, 4393-4404.
- Castillejos, L., S. Calsamiglia, and A. Ferret. 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 89, 2649-2658.
- Crocker, C.L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol, 33, 361-365.
- Guo, Y.Q., J.-X. Liu, Y. Lu, W.Y. Zhu, S.E. Denman, and C.S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47, 421-426.
- Firkin, J.L. 1996. Maximizing microbial protein synthesis in the rumen. J. Nutr. 126, 1347-1354.
- Kamra, D.N. 2005. Rumen microbial ecosystem. Curr. Sci. 89, 124-135.
- Kongmun, P., M. Wanapat, P. Pakdee, C. Navanukraw, and Z. Yu. 2011. Manipulation of rumen fermentation and ecology of swampbuffalo by coconut oil and garlic powder supplementation. Livest. Sci. 135, 84-92.

- Lawson, L., 1996. The composition and chemistry of garlic cloves and processed garlic. In: Koch, H.P., Lawson, L.D. (Eds.), Garlic. The Science and Therapeutic Application of Allium sativum L. and Related Species. Williams and Wilkins, Baltimore. MD, pp. 37-107.
- Ngamsaeng, A., M. Wanapat, and S. Khampa. 2006. Effects of mangosteen peel (Garcinia mangostana) supplementation on rumen ecology, microbial protein synthesis, digestibility and voluntary feed intake in cattle. Pakistan J. Nutr. 5, 445-452.
- Ørskov, E. R. 1992. Protein nutrition in ruminants. Acedamic press Inc. San Diego, California, U.S.A.
- Patra, A.K., D.N. Kamra, and N. Agarwal. 2006. Effect of plant extracts on in vitro Methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed. Sci. Technol. 128, 276-291.
- Pilajun, R., and M. Wanapat. 2011. Effect of coconut oil and mangosteen peel supplementation on ruminal fermentation, microbial population and microbial protein synthesis in swamp buffaloes. J. Livest. Sci. 141, 148-154.

- Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 5, 389-400.
- SAS, 1996. User's Guide: Statistic, Version 5. Edition. SAS. Inst Cary, NC, U.S.A.
- Steel, R.G.D., and J.H. Torrie. 1980. Principles and Procedures of Statistics. McGraw Hill Book Co., New York, NY.
- Van Soest, P.J., J.B. Robertson, and B.A., Lewis. 1991.

 Methods of dietary fiber, neutral detergent fiber and non-starch carbohydrates in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
- Wanapat, M., A. Cherdthong, P. Pakdee, and S. Wanapat. 2008. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation. J. Anim. Sci. 86, 3497-3503.